API Documentation: clustermap.py¤
Clustermap
pydantic-model
¤
Bases: BaseModel
Clustermap.
Config:
arbitrary_types_allowed:True
Fields:
-
dtm(ArrayLike | DTM | DataFrame) -
labels(Optional[list[str]]) -
metric(Optional[str]) -
method(Optional[str]) -
hide_upper(Optional[bool]) -
hide_side(Optional[bool]) -
title(Optional[str]) -
fig(Optional[Figure]) -
z_score(Optional[int]) -
pivot_kws(Optional[dict[str, str]]) -
standard_scale(Optional[int]) -
figsize(Optional[tuple[int, int]]) -
cbar_kws(Optional[dict]) -
row_cluster(Optional[bool]) -
col_cluster(Optional[bool]) -
row_linkage(Optional[ndarray]) -
col_linkage(Optional[ndarray]) -
row_colors(Optional[list | DataFrame | Series | str | ListedColormap]) -
col_colors(Optional[list | DataFrame | Series | str | ListedColormap]) -
mask(Optional[ndarray | DataFrame]) -
dendrogram_ratio(Optional[float | tuple[float, float]]) -
colors_ratio(Optional[float]) -
cbar_pos(Optional[tuple[str | float]]) -
tree_kws(Optional[dict]) -
center(Optional[float | int]) -
cmap(Optional[str]) -
linewidths(Optional[float])
Source code in lexos/cluster/clustermap.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
cbar_kws: Optional[dict] = None
pydantic-field
¤
The cbar kwargs for the clustermap.
cbar_pos: Optional[tuple[str | float]] = (0.02, 0.32, 0.03, 0.2)
pydantic-field
¤
The cbar position for the clustermap.
center: Optional[float | int] = 0
pydantic-field
¤
The center for the clustermap.
cmap: Optional[str] = 'vlag'
pydantic-field
¤
The cmap for the clustermap.
col_cluster: Optional[bool] = True
pydantic-field
¤
Whether to cluster the columns.
col_colors: Optional[list | pd.DataFrame | pd.Series | str | ListedColormap] = None
pydantic-field
¤
The column colors.
col_linkage: Optional[np.ndarray] = None
pydantic-field
¤
Precomputed linkage matrix for the columns. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage for specific formats.
colors_ratio: Optional[float] = 0.03
pydantic-field
¤
The colors ratio for the clustermap.
dendrogram_ratio: Optional[float | tuple[float, float]] = (0.1, 0.2)
pydantic-field
¤
The dendrogram ratio for the clustermap.
dtm: ArrayLike | DTM | pd.DataFrame
pydantic-field
¤
The document-term matrix.
figsize: Optional[tuple[int, int]] = (8, 8)
pydantic-field
¤
The figure size for the clustermap.
hide_side: Optional[bool] = False
pydantic-field
¤
Hide the side dendrogram.
hide_upper: Optional[bool] = False
pydantic-field
¤
Hide the upper dendrogram.
labels: Optional[list[str]] = None
pydantic-field
¤
The labels for the clustermap.
linewidths: Optional[float] = 0.75
pydantic-field
¤
The linewidths for the dendrograms.
mask: Optional[np.ndarray | pd.DataFrame] = None
pydantic-field
¤
The mask for the clustermap.
method: Optional[str] = 'average'
pydantic-field
¤
The method to use for the dendrograms.
metric: Optional[str] = 'euclidean'
pydantic-field
¤
The metric to use for the dendrograms.
pivot_kws: Optional[dict[str, str]] = None
pydantic-field
¤
The pivot kwargs for the clustermap.
row_cluster: Optional[bool] = True
pydantic-field
¤
Whether to cluster the rows.
row_colors: Optional[list | pd.DataFrame | pd.Series | str | ListedColormap] = None
pydantic-field
¤
The row colors.
row_linkage: Optional[np.ndarray] = None
pydantic-field
¤
Precomputed linkage matrix for the rows. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage for specific formats.
standard_scale: Optional[int] = None
pydantic-field
¤
The standard scale for the clustermap.
title: Optional[str] = None
pydantic-field
¤
The title for the dendrogram.
tree_kws: Optional[dict] = None
pydantic-field
¤
The tree kwargs for the dendrograms.
z_score: Optional[int] = 1
pydantic-field
¤
The z-score for the clustermap.
__init__(**data) -> None
¤
Initialize the Clustermap instance.
Source code in lexos/cluster/clustermap.py
save(path: Path | str, **kwargs: Any)
¤
Save the figure to a file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The path of the file to save. |
required |
**kwargs
|
Any
|
Additional keyword arguments for pyplot.savefig. See https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html. |
{}
|
Source code in lexos/cluster/clustermap.py
show()
¤
Show the figure if it is hidden.
This is a helper method. You can also reference the figure
using ClusterMap.fig. This will generally display in a
Jupyter notebook.
__init__(**data) -> None
¤
Initialize the Clustermap instance.
Source code in lexos/cluster/clustermap.py
save(path: Path | str, **kwargs: Any)
¤
Save the figure to a file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The path of the file to save. |
required |
**kwargs
|
Any
|
Additional keyword arguments for pyplot.savefig. See https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html. |
{}
|
Source code in lexos/cluster/clustermap.py
show()
¤
Show the figure if it is hidden.
This is a helper method. You can also reference the figure
using ClusterMap.fig. This will generally display in a
Jupyter notebook.
_get_colors() -> ListedColormap | None
¤
Get the row and column colors for the clustermap.
Notes: - For valid palettes, see https://seaborn.pydata.org/generated/seaborn.color_palette.html. - The value "default" will use the husl palette with 8 colours.
Returns:
| Type | Description |
|---|---|
ListedColormap | None
|
A matplotlib ListedColormap or None. |
Source code in lexos/cluster/clustermap.py
_set_attrs(**kwargs: Any)
¤
Set the attributes of the class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
The attributes to set. |
{}
|
_set_labels()
¤
Set the labels for the clustermap.
Source code in lexos/cluster/clustermap.py
_validate_linkage_matrices()
¤
Validate the linkage matrices.
Source code in lexos/cluster/clustermap.py
PlotlyClustermap
pydantic-model
¤
Bases: BaseModel
Plotly version of the Clustermap.
Config:
arbitrary_types_allowed:True
Fields:
-
dtm(Optional[ArrayLike | DTM | DataFrame]) -
labels(Optional[list[str]]) -
metric(Optional[str]) -
method(Optional[str]) -
hide_upper(Optional[bool]) -
hide_side(Optional[bool]) -
title(Optional[str]) -
fig(Optional[Figure]) -
z_score(Optional[int]) -
pivot_kws(Optional[dict[str, str]]) -
standard_scale(Optional[int]) -
figsize(Optional[tuple[int, int]]) -
cbar_kws(Optional[dict]) -
row_cluster(Optional[bool]) -
col_cluster(Optional[bool]) -
row_linkage(Optional[ndarray]) -
col_linkage(Optional[ndarray]) -
row_colors(Optional[list | DataFrame | Series | str | ListedColormap]) -
col_colors(Optional[list | DataFrame | Series | str | ListedColormap]) -
mask(Optional[ndarray | DataFrame]) -
dendrogram_ratio(Optional[float | tuple[float, float]]) -
colors_ratio(Optional[float]) -
cbar_pos(Optional[tuple[str]]) -
colorbar(Optional[dict[str, Any]]) -
tree_kws(Optional[dict]) -
center(Optional[float | int]) -
cmap(Optional[str]) -
linewidths(Optional[float]) -
annot(Optional[bool]) -
fmt(Optional[str]) -
show_dendrogram_labels(Optional[bool]) -
show_heatmap_labels(Optional[bool]) -
kwargs(Any)
Source code in lexos/cluster/clustermap.py
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | |
annot: Optional[bool] = False
pydantic-field
¤
Whether to annotate the clustermap.
cbar_kws: Optional[dict] = None
pydantic-field
¤
The cbar kwargs for the clustermap.
cbar_pos: Optional[tuple[str]] = (0.02, 0.32, 0.03, 0.2)
pydantic-field
¤
The cbar position for the clustermap.
center: Optional[float | int] = 0
pydantic-field
¤
The center for the clustermap. Default could be None.
cmap: Optional[str] = 'viridis'
pydantic-field
¤
The cmap for the clustermap.
col_cluster: Optional[bool] = True
pydantic-field
¤
Whether to cluster the columns.
col_colors: Optional[list | pd.DataFrame | pd.Series | str | ListedColormap] = None
pydantic-field
¤
The column colors.
col_linkage: Optional[np.ndarray] = None
pydantic-field
¤
Precomputed linkage matrix for the columns. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage for specific formats.
colorbar: Optional[dict[str, Any]] = dict(x=0.11, y=0.5, xref='container', yref='container', len=0.6)
pydantic-field
¤
The colorbar position for the clustermap. This is a more generic version than cbar_pos and can be used to set the position of the colorbar in a more flexible way.
colors_ratio: Optional[float] = 0.03
pydantic-field
¤
The colors ratio for the clustermap.
dendrogram_ratio: Optional[float | tuple[float, float]] = (0.8, 0.2)
pydantic-field
¤
The dendrogram ratio for the clustermap.
dtm: Optional[ArrayLike | DTM | pd.DataFrame]
pydantic-field
¤
The document-term matrix.
figsize: Optional[tuple[int, int]] = (700, 700)
pydantic-field
¤
The figure size for the clustermap in pixels.
fmt: Optional[str] = '.2g'
pydantic-field
¤
The format for the annotations in the clustermap.
hide_side: Optional[bool] = False
pydantic-field
¤
Hide the side dendrogram.
hide_upper: Optional[bool] = False
pydantic-field
¤
Hide the upper dendrogram.
kwargs: Any = {}
pydantic-field
¤
Additional keyword arguments for the clustermap.
labels: Optional[list[str]] = None
pydantic-field
¤
The labels for the clustermap.
linewidths: Optional[float] = 0.75
pydantic-field
¤
The linewidths for the dendrograms. Default could be 0.
mask: Optional[np.ndarray | pd.DataFrame] = None
pydantic-field
¤
The mask for the clustermap.
method: Optional[str] = 'average'
pydantic-field
¤
The method to use for the dendrograms.
metric: Optional[str] = 'euclidean'
pydantic-field
¤
The metric to use for the dendrograms.
pivot_kws: Optional[dict[str, str]] = None
pydantic-field
¤
The pivot kwargs for the clustermap.
row_cluster: Optional[bool] = True
pydantic-field
¤
Whether to cluster the rows.
row_colors: Optional[list | pd.DataFrame | pd.Series | str | ListedColormap] = None
pydantic-field
¤
The row colors.
row_linkage: Optional[np.ndarray] = None
pydantic-field
¤
Precomputed linkage matrix for the rows. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage for specific formats.
show_dendrogram_labels: Optional[bool] = False
pydantic-field
¤
Whether to show the labels on the dendrograms.
show_heatmap_labels: Optional[bool] = True
pydantic-field
¤
Whether to show the labels on the heatmap.
standard_scale: Optional[int] = None
pydantic-field
¤
The standard scale for the clustermap.
title: Optional[str] = None
pydantic-field
¤
The title for the dendrogram.
tree_kws: Optional[dict] = None
pydantic-field
¤
The tree kwargs for the dendrograms.
z_score: Optional[int] = 1
pydantic-field
¤
The z-score for the clustermap.
__init__(**data) -> None
¤
Initialize the PlotlyClustermap instance.
Source code in lexos/cluster/clustermap.py
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 | |
save(path: Path | str, **kwargs: Any) -> None
¤
Save a static image of the figure to disk.
Alias of write_image()
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the image. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_image method. |
{}
|
Source code in lexos/cluster/clustermap.py
show()
¤
to_html(include_sync=False, **kwargs: Any) -> str
¤
Create an HTML representation of the figure with optional synchronization.
Wrapper from the Plotly Figure to_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
include_sync
|
bool
|
Whether to include the synchronization script. |
False
|
**kwargs
|
Any
|
Additional keyword arguments for the to_html method. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
The HTML representation of the figure. |
Source code in lexos/cluster/clustermap.py
to_image(**kwargs: Any) -> bytes
¤
Create a static image of the figure.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
Additional keyword arguments for the to_image method. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
bytes |
bytes
|
The image in bytes. |
Wrapper from the Plotly Figure to_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
write_html(path: Path | str, **kwargs: Any) -> None
¤
Save an HTML representation of the figure to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the HTML. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_html method. |
{}
|
Wrapper from the Plotly Figure write_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
write_image(path: Path | str, **kwargs: Any) -> None
¤
Save a static image of the figure to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the image. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_image method. |
{}
|
Wrapper from the Plotly Figure write_image method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
__init__(**data) -> None
¤
Initialize the PlotlyClustermap instance.
Source code in lexos/cluster/clustermap.py
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 | |
save(path: Path | str, **kwargs: Any) -> None
¤
Save a static image of the figure to disk.
Alias of write_image()
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the image. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_image method. |
{}
|
Source code in lexos/cluster/clustermap.py
show()
¤
to_html(include_sync=False, **kwargs: Any) -> str
¤
Create an HTML representation of the figure with optional synchronization.
Wrapper from the Plotly Figure to_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
include_sync
|
bool
|
Whether to include the synchronization script. |
False
|
**kwargs
|
Any
|
Additional keyword arguments for the to_html method. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
The HTML representation of the figure. |
Source code in lexos/cluster/clustermap.py
to_image(**kwargs: Any) -> bytes
¤
Create a static image of the figure.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Any
|
Additional keyword arguments for the to_image method. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
bytes |
bytes
|
The image in bytes. |
Wrapper from the Plotly Figure to_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
write_html(path: Path | str, **kwargs: Any) -> None
¤
Save an HTML representation of the figure to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the HTML. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_html method. |
{}
|
Wrapper from the Plotly Figure write_html method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
write_image(path: Path | str, **kwargs: Any) -> None
¤
Save a static image of the figure to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
The file path to save the image. |
required |
**kwargs
|
Any
|
Additional arguments to pass to the write_image method. |
{}
|
Wrapper from the Plotly Figure write_image method. See https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html.
Source code in lexos/cluster/clustermap.py
_adjust_layout_for_hidden_upper() -> None
¤
Adjust the layout when the upper dendrogram is hidden to move components up.
Source code in lexos/cluster/clustermap.py
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 | |
_set_labels()
¤
Set the labels for the clustermap.
Source code in lexos/cluster/clustermap.py
PlotlyClusterGrid
¤
Plotly implementation of clustered heatmap with dendrograms.
Methods:
| Name | Description |
|---|---|
__init__ |
Initialize the cluster grid. |
Source code in lexos/cluster/clustermap.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | |
__init__(data: pd.DataFrame | np.ndarray, z_score: Optional[int] = None, standard_scale: Optional[int] = None, mask: Optional[np.ndarray | pd.DataFrame] = None, figsize: tuple[int, int] = (800, 600), dendrogram_ratio: float | tuple[float, float] = 0.2) -> None
¤
Initialize the cluster grid.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame or array - like
|
Rectangular data for clustering |
required |
z_score
|
int
|
Whether to z-score rows (0) or columns (1) |
None
|
standard_scale
|
int
|
Whether to standard scale rows (0) or columns (1) |
None
|
mask
|
bool array or DataFrame
|
Mask for data visualization |
None
|
figsize
|
tuple[int, int]
|
Figure size (width, height) |
(800, 600)
|
dendrogram_ratio
|
float | tuple[float, float]
|
Ratio of dendrogram size to heatmap size |
0.2
|
Source code in lexos/cluster/clustermap.py
__init__(data: pd.DataFrame | np.ndarray, z_score: Optional[int] = None, standard_scale: Optional[int] = None, mask: Optional[np.ndarray | pd.DataFrame] = None, figsize: tuple[int, int] = (800, 600), dendrogram_ratio: float | tuple[float, float] = 0.2) -> None
¤
Initialize the cluster grid.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
DataFrame or array - like
|
Rectangular data for clustering |
required |
z_score
|
int
|
Whether to z-score rows (0) or columns (1) |
None
|
standard_scale
|
int
|
Whether to standard scale rows (0) or columns (1) |
None
|
mask
|
bool array or DataFrame
|
Mask for data visualization |
None
|
figsize
|
tuple[int, int]
|
Figure size (width, height) |
(800, 600)
|
dendrogram_ratio
|
float | tuple[float, float]
|
Ratio of dendrogram size to heatmap size |
0.2
|
Source code in lexos/cluster/clustermap.py
_format_data(z_score: Optional[int] = None, standard_scale: Optional[int] = None) -> pd.DataFrame
¤
Format and normalize data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z_score
|
int
|
Whether to z-score rows (0) or columns (1) |
None
|
standard_scale
|
int
|
Whether to standard scale rows (0) or columns (1) |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
pd.DataFrame: Formatted data |
Source code in lexos/cluster/clustermap.py
_z_score(data2d: pd.DataFrame, axis: int = 1) -> pd.DataFrame
staticmethod
¤
Standardize the mean and variance of the data axis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data2d
|
DataFrame
|
Data to z-score |
required |
Returns: pd.DataFrame: Z-scored data
Source code in lexos/cluster/clustermap.py
_standard_scale(data2d: pd.DataFrame, axis: int = 1) -> pd.DataFrame
staticmethod
¤
Divide the data by the difference between the max and min.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data2d
|
DataFrame
|
Data to standard scale |
required |
axis
|
int
|
Axis along which to scale (0 for rows, 1 for columns) |
1
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
pd.DataFrame: Standard scaled data |
Source code in lexos/cluster/clustermap.py
_process_mask(mask: Optional[np.ndarray | pd.DataFrame]) -> Optional[pd.DataFrame]
¤
Process mask for data visualization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mask
|
ndarray | DataFrame
|
Mask to apply to the data |
required |
Returns:
| Type | Description |
|---|---|
Optional[DataFrame]
|
pd.DataFrame: Processed mask |
Source code in lexos/cluster/clustermap.py
_calculate_linkage(data: np.ndarray, method: str = 'average', metric: str = 'euclidean') -> np.ndarray
¤
Calculate linkage matrix.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
ndarray
|
Data to cluster |
required |
method
|
str
|
Linkage method |
'average'
|
metric
|
str
|
Distance metric |
'euclidean'
|
Returns:
| Type | Description |
|---|---|
ndarray
|
np.ndarray: Linkage matrix |
Source code in lexos/cluster/clustermap.py
_get_matrix(matrix: ArrayLike | DTM | pd.DataFrame) -> ArrayLike | pd.DataFrame
¤
Get a valid matrix from the input.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
matrix
|
ArrayLike | DTM | DataFrame
|
The input matrix, which can be an ArrayLike object, a DTM, or a pandas DataFrame. |
required |
Returns:
| Type | Description |
|---|---|
ArrayLike | DataFrame
|
ArrayLike | pd.DataFrame: A valid matrix that is not a sparse array and has more than one document. |
Source code in lexos/cluster/clustermap.py
_create_dendrogram_traces(linkage_matrix: np.ndarray, labels: Optional[list[str]] = None, orientation: str = 'bottom', color: str = 'rgb(50,50,50)', line_width: float = 1.0) -> list[go.Scatter]
¤
Create dendrogram traces from linkage matrix.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
linkage_matrix
|
array - like
|
Linkage matrix from scipy.cluster.hierarchy.linkage |
required |
labels
|
list
|
Labels for the leaves |
None
|
orientation
|
str
|
Orientation of dendrogram ('top', 'bottom', 'left', 'right') |
'bottom'
|
color
|
str
|
Color for dendrogram lines |
'rgb(50,50,50)'
|
line_width
|
float
|
Width of dendrogram lines |
1.0
|
Returns:
| Name | Type | Description |
|---|---|---|
traces |
list
|
List of plotly scatter traces for dendrogram |
Source code in lexos/cluster/clustermap.py
The sync_script script synchronizes the heatmap and dendrogram axes in a Plotly clustermap. It is added to the HTML output of the clustermap to ensure that when the user zooms or pans on one axis, the corresponding axes are updated accordingly.