DTM¤
The DTM
module contains a basic DTM
class.
lexos.dtm.DTM
¤
Class for a document-term matrix.
Source code in lexos\dtm\__init__.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
__init__(docs=List[Union[List[str], spacy.tokens.doc.Doc]], labels=None)
¤
Initialise the DTM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs |
List[Union[List[str], spacy.tokens.doc.Doc]]
|
A list of spaCy docs or a list of token lists. |
List[Union[List[str], spacy.tokens.doc.Doc]]
|
labels |
List[str]
|
A list of labels for the documents. |
None
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in lexos\dtm\__init__.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
build()
¤
Build a new DTM matrix based on the current vectorizer.
Source code in lexos\dtm\__init__.py
73 74 75 76 77 78 79 |
|
get_freq_table(rounding=3, as_percent=False)
¤
Get a table with the relative frequencies of terms in each document.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rounding |
int
|
The number of digits to round floats. |
3
|
as_percent |
bool
|
Whether to return the frequencies as percentages. |
False
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
pd.DataFrame: A dataframe with the relative frequencies. |
Source code in lexos\dtm\__init__.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
get_stats_table(stats='sum', rounding=3)
¤
Get a table with the sum, mean, and/or median calculated for each row.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats |
Union[List[str], str]
|
One or more of "sum", "mean", and/or "median". |
'sum'
|
rounding |
int
|
The number of digits to round floats. |
3
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
pd.DataFrame: A dataframe with the calculated statistics. |
Source code in lexos\dtm\__init__.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
get_table(transpose=False)
¤
Get a Textacy document-term matrix as a pandas dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transpose |
bool
|
If True, terms are columns and docs are rows. |
False
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
pd.Dataframe |
Source code in lexos\dtm\__init__.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
get_term_counts(sort_by=['terms', 'sum'], ascending=True, alg=SORTING_ALGORITHM)
¤
Get a list of term counts with optional sorting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sort_by |
Union[list, List[str]]
|
The column(s) to sort by in order of preference. |
['terms', 'sum']
|
ascending |
Union[bool, List[bool]]
|
Whether to sort values in ascending or descending order. |
True
|
Returns:
Name | Type | Description |
---|---|---|
List |
tuple
|
A list of tuples containing terms and counts. |
Source code in lexos\dtm\__init__.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
get_terms()
¤
Get an alphabetical list of terms.
Source code in lexos\dtm\__init__.py
153 154 155 |
|
least_frequent(max_n_terms=100, start=0)
¤
Get the most frequent terms in the DTM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_n_terms |
int
|
The number of terms to return. |
100
|
start |
int
|
int = 0: The start index in the DTM table. |
0
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
pd.DataFrame: The reduced DTM table. |
the vectorizer because the table will be cut twice.
Source code in lexos\dtm\__init__.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
most_frequent(max_n_terms=100, start=0)
¤
Get the most frequent terms in the DTM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_n_terms |
int
|
The number of terms to return. |
100
|
start |
int
|
int = 0: The start index in the DTM table. |
0
|
Returns:
Type | Description |
---|---|
pd.DataFrame
|
pd.DataFrame: The reduced DTM table. |
the vectorizer because the table will be cut twice.
Source code in lexos\dtm\__init__.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
set_vectorizer(tf_type='linear', idf_type=None, dl_type=None, norm=None, min_df=1, max_df=1.0, max_n_terms=None, vocabulary_terms=None, new=False)
¤
Set the vectorizer.
By default, returns a vectorizer that gets raw counts.
Source code in lexos\dtm\__init__.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
lexos.dtm.DtmData
¤
Bases: BaseModel
DtmData class.
This model validates the input data for the DTM and, if necessary, coerces it to a list of token lists.
Source code in lexos\dtm\__init__.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
Config
¤
Config class.
Source code in lexos\dtm\__init__.py
24 25 26 27 |
|
ensure_token_lists(v)
¤
Coerces input to a list of token lists where each token is a string.
Source code in lexos\dtm\__init__.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|