Skip to content

Mallet¤

Topic modeling is a statistical method for discovering abstract themes or "topics" within a collection of documents. MALLET is a mature tool for topic modeling used widely in the Humanities. It is a Java package that needs to be installed separately from Lexos. The Lexos mallet module provides a straightforward wrapper for running MALLET, managing outputs, and creating visualizations of your topic model.

MALLET_BINARY_PATH = os.getenv('MALLET_BINARY_PATH') or 'mallet' module-attribute ¤

read_file(file: Path | str) -> list[str] ¤

Import data from a single text file with one document per line.

Parameters:

Name Type Description Default
file Path | str

A file containing the documents to import.

required

Returns:

Type Description
list[str]

list[str]: The training data.

Notes

This function uses an internal helper _check_format to validate and convert the input data to MALLET format. The helper accepts data with 1-3 tab-separated columns and normalizes it to the format: id\\tlabel\\ttext.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call
def read_file(file: Path | str) -> list[str]:
    r"""Import data from a single text file with one document per line.

    Args:
        file (Path | str): A file containing the documents to import.

    Returns:
        list[str]: The training data.

    Notes:
        This function uses an internal helper `_check_format` to validate and convert the input data to MALLET format. The helper accepts data with 1-3 tab-separated columns and normalizes it to the format: `id\\tlabel\\ttext`.
    """

    # Check the format of the input data and convert to MALLET format if necessary
    def _check_format(file: Path | str) -> list[str]:
        """Check the format of the input data and convert to MALLET format if necessary.

        Args:
            file (Path | str): The input file to check.

        Returns:
            list[str]: The training data in MALLET format.
        """
        df = pd.read_csv(file, sep="\t", header=None)
        if len(df.columns) == 1:
            df["label"] = ""
            df["id"] = df.index
            df = df[["id", "label", 0]]
        elif len(df.columns) == 2:
            df["id"] = df.index
            df["label"] = ""
            df = df[["id", "label", 1]]
        elif len(df.columns) >= 3:
            # Merge column 2 with all subsequent columns
            df[2] = df.iloc[:, 2:].apply(
                lambda x: " ".join(x.dropna().astype(str)), axis=1
            )
            df = df[[0, 1, 2]]
        else:
            raise ValueError("Input data must have between 1 and 3 columns.")
        df.columns = ["id", "label", "text"]
        return [
            f"{str(row['id']).strip()}\t{str(row['label']).strip()}\t{str(row['text']).strip()}"
            for row in df.to_dict(orient="records")
        ]

    # Validate the input
    if isinstance(file, bool):
        raise LexosException(
            "Invalid input for `file`. Expected a file path (str or Path), not a boolean."
        )

    # Retrieve the data from file
    try:
        return _check_format(file)
    except FileNotFoundError:
        raise LexosException(f"File {file} does not exist.")
    except IOError:
        raise LexosException(f"File {file} could not be read.")

read_dirs(dirs: Path | str | list[Path | str]) -> list[str] ¤

Import a directory or list of directories.

Parameters:

Name Type Description Default
dirs Path | str | list[Path | str]

A directory or list of directories to import.

required

Returns:

Type Description
list[str]

list[str]: The training data.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call
def read_dirs(dirs: Path | str | list[Path | str]) -> list[str]:
    """Import a directory or list of directories.

    Args:
        dirs (Path | str | list[Path | str]): A directory or list of directories to import.

    Returns:
        list[str]: The training data.
    """
    # Ensure dirs is a list
    dirs = ensure_list(dirs)

    # Retrieve file paths or raise an error if the directory does not exist
    training_data = []
    for dir in dirs:
        # Validate the argument type here to provide a clear error message
        if isinstance(dir, bool) or not isinstance(dir, (str, Path)):
            raise LexosException(
                f"Invalid directory argument '{dir}'. Expected a directory path (str or Path)."
            )
        if not Path(dir).is_dir():
            raise LexosException(f"Directory {dir} does not exist.")
        else:
            # NOTE: Cannot use Path.glob() here because it returns a generator, which disrupts testing.
            filepaths = glob.glob(f"{dir}/*.txt")
            for path in filepaths:
                if Path(path).is_file():
                    with open(path, "r", encoding="utf-8") as f:
                        training_data.append(f.read())

    return training_data

import_files(files: Path | str | list[Path | str]) -> list[str] ¤

Import the text content of a file or list of files.

Parameters:

Name Type Description Default
files Path | str | list[Path | str]

A file or list of files to read.

required

Returns:

Type Description
list[str]

list[str]: A list of file contents.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call
def import_files(files: Path | str | list[Path | str]) -> list[str]:
    """Import the text content of a file or list of files.

    Args:
        files (Path | str | list[Path | str]): A file or list of files to read.

    Returns:
        list[str]: A list of file contents.
    """
    if isinstance(files, (Path, str)):
        files = [files]
    contents = []
    for file in files:
        try:
            with open(file, "r", encoding="utf-8") as fh:
                contents.append(fh.read())
        except FileNotFoundError:
            raise LexosException(f"File {file} does not exist")
        except IOError:
            raise LexosException(f"File {file} could not be read")
    return contents

import_docs(docs: list[str | Doc]) -> list[str] ¤

Import a list of document strings or spaCy Docs.

Parameters:

Name Type Description Default
docs list[str | Doc]

List of documents.

required

Returns:

Type Description
list[str]

list[str]: List of document texts.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=ConfigDict(arbitrary_types_allowed=True))
def import_docs(docs: list[str | Doc]) -> list[str]:
    """Import a list of document strings or spaCy Docs.

    Args:
        docs (list[str | Doc]): List of documents.

    Returns:
        list[str]: List of document texts.
    """
    training_data = []
    for doc in docs:
        if isinstance(doc, Doc):
            training_data.append(doc.text)
        else:
            training_data.append(doc)
    return training_data

Mallet pydantic-model ¤

Bases: BaseModel

A class for training and using MALLET topic models.

Config:

  • arbitrary_types_allowed: True

Fields:

Source code in lexos/topic_modeling/mallet/__init__.py
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
class Mallet(BaseModel):
    """A class for training and using MALLET topic models."""

    # IMPORTANT: The class initializes with only the `model_directory` key.
    # Functions will add canonical metadata entries as needed (e.g.
    # 'path_to_topic_distributions', 'path_to_term_weights', 'path_to_topic_keys').
    # Legacy synonyms are not used; code reads canonical keys only.

    path_to_mallet: str = MALLET_BINARY_PATH
    # Accept either a string or a Path for `model_dir` to allow intuitive usage
    model_dir: Optional[Path | str] = Field(
        None,
        description="The directory where the model is stored.",
    )
    metadata: dict[str, Any] = Field(
        {},
        description="A dict containing metadata generated by the class instance.",
    )

    model_config = ConfigDict(arbitrary_types_allowed=True)

    # Canonical metadata keys used consistently across methods for common
    # training outputs. To preserve backward compatibility when loading
    # metadata produced by older flows, a set of synonyms is still supported
    # but all internal methods should rely only on the canonical keys below.
    # The synonyms list is used for migration to canonical form.
    CANONICAL_DOC_TOPIC_KEY: ClassVar[str] = "path_to_topic_distributions"
    # canonical key names
    CANONICAL_DOC_TOPIC_KEY: ClassVar[str] = "path_to_topic_distributions"
    CANONICAL_TERM_WEIGHTS_KEY: ClassVar[str] = "path_to_term_weights"
    CANONICAL_TOPIC_KEYS_KEY: ClassVar[str] = "path_to_topic_keys"
    CANONICAL_INFERENCER_KEY: ClassVar[str] = "path_to_inferencer"

    def _metadata_get(self, keys: list[str]) -> str | None:
        """Return the first metadata value present among the provided keys or None.

        The method assumes callers pass canonical key names; no synonym
        translation is performed.
        """
        # Only accept the canonical key for each category. If a synonym key is
        # present (legacy metadata), raise an error instructing users to use
        # the canonical key. This ensures a single canonical name per category.
        for k in keys:
            if k in self.metadata and self.metadata[k]:
                return self.metadata[k]
        return None

    def _metadata_has(self, keys: list[str]) -> bool:
        return self._metadata_get(keys) is not None

    # No metadata canonicalization: initialization should only set model_directory
    # and functions will add canonical keys as necessary.

    def __init__(self, **data) -> None:
        """Initialize the Mallet class."""
        super().__init__(**data)
        # Assign the model directory if provided via constructor (model_dir)
        # or via incoming metadata. Create the directory if it is provided
        # to maintain a predictable filesystem state for later operations.
        if self.model_dir is None and isinstance(self.metadata, dict):
            # If the user provided a model_directory via metadata, accept it.
            if "model_directory" in self.metadata:
                self.model_dir = self.metadata["model_directory"]
        # If we now have a model_dir, validate and create it
        if self.model_dir is not None:
            # Validate that model_dir is not a boolean
            if isinstance(self.model_dir, bool):
                raise LexosException(
                    "Invalid `model_dir` argument: expected a path (str or Path), not a boolean."
                )
            # Convert Path objects to str
            if isinstance(self.model_dir, Path):
                model_dir_str = str(self.model_dir)
            else:
                model_dir_str = self.model_dir
            # Ensure the model_dir is not a file
            p = Path(model_dir_str)
            if p.exists() and p.is_file():
                raise LexosException(
                    f"The specified `model_dir` ({model_dir_str}) exists and is a file, expected a directory."
                )
            # Create the directory if it does not exist
            p.mkdir(parents=True, exist_ok=True)
            # Set metadata `model_directory` if not already set
            if not isinstance(data.get("model_dir"), type(None)):
                self.metadata["model_directory"] = model_dir_str
        # Do not alter user-supplied metadata keys outside this logic.

    @cached_property
    def distributions(self) -> list[str]:
        """Get the topic distributions of the model."""
        # Resolve the distribution path using canonical metadata resolution
        distro_path = self._metadata_get([self.CANONICAL_DOC_TOPIC_KEY])
        if distro_path is None:
            raise LexosException(
                "No topic distributions have been set. Please designate a path for `path_to_topic_distributions` when you train your topic model."
            )

        topic_distributions = []
        with open(distro_path, "r") as f:
            for line in f.readlines():
                # Skip blank lines
                if not line.strip():
                    continue
                if line.split()[0] != "#doc":
                    # Try tab-delimited format first: id \t docid \t val1 \t val2 ...
                    parts = line.strip().split("\t")
                    if len(parts) >= 3:
                        raw_dist = parts[2:]
                        # If the distribution token contains topic:prob pairs as a single
                        # token (e.g. '0:0.1 1:0.9'), parse it out into a dense vector
                        if len(raw_dist) == 1 and ":" in raw_dist[0]:
                            token = raw_dist[0]
                            pairs = re.split(r"\s+", token)
                            if all(":" in p for p in pairs):
                                tp_map = {}
                                max_topic = -1
                                for p in pairs:
                                    try:
                                        t, prob = p.split(":")
                                        t_i = int(t)
                                        prob_f = float(prob)
                                        tp_map[t_i] = prob_f
                                        if t_i > max_topic:
                                            max_topic = t_i
                                    except Exception:
                                        raise LexosException(
                                            f"Topic:prob pair malformed in: {p}"
                                        )
                                raw_dist = [
                                    str(tp_map.get(i, 0.0))
                                    for i in range(max_topic + 1)
                                ]
                    else:
                        # If no tabs, try whitespace-separated: id docid val1 val2 ...
                        parts_ws = re.split(r"\s+", line.strip())
                        if len(parts_ws) >= 3:
                            raw_dist = parts_ws[2:]
                        else:
                            # If there is a single token containing topic:prob pairs like
                            # '0:0.1 1:0.2 2:0.7', split and parse those
                            token = line.strip().split()[-1]
                            pairs = re.split(r"\s+", token)
                            if all(":" in p for p in pairs):
                                # rebuild distribution as a full dense vector if possible
                                # create a dict mapping topic idx to prob
                                tp_map = {}
                                max_topic = -1
                                for p in pairs:
                                    try:
                                        t, prob = p.split(":")
                                        t_i = int(t)
                                        prob_f = float(prob)
                                        tp_map[t_i] = prob_f
                                        if t_i > max_topic:
                                            max_topic = t_i
                                    except Exception:
                                        raise LexosException(
                                            f"Topic:prob pair malformed in: {p}"
                                        )
                                # convert mapping to list of floats (dense vector)
                                raw_dist = [
                                    str(tp_map.get(i, 0.0))
                                    for i in range(max_topic + 1)
                                ]
                            else:
                                raise LexosException(
                                    f"The line '{line.strip()}' in the topic distributions file is not formatted correctly."
                                )
                    try:
                        distribution = [float(p) for p in raw_dist]
                    except Exception:
                        raise LexosException(
                            f"Unable to parse distribution values from line: '{line.strip()}'"
                        )
                    topic_distributions.append(distribution)

        return topic_distributions

    @property
    def num_docs(self) -> int:
        """Get the number of docs in the model."""
        if "num_docs" in self.metadata:
            return self.metadata["num_docs"]
        else:
            return 0

    @property
    def mean_num_tokens(self) -> int:
        """Get the mean number of tokens per document in the model."""
        if "mean_num_tokens" in self.metadata:
            v = self.metadata["mean_num_tokens"]
            try:
                return v.item()
            except Exception:
                return int(v)
        else:
            return 0

    @property
    def model_directory(self) -> str:
        """Return the model_directory from metadata or raise LexosException if missing."""
        if isinstance(self.metadata, dict) and "model_directory" in self.metadata:
            return self.metadata["model_directory"]
        raise LexosException(
            "No model directory has been set; provide one or set 'model_directory' in metadata."
        )

    @cached_property
    def topic_keys(self) -> list[list[str]]:
        """Get the keys of the model.

        Returns:
            list[list[str]]: A list of topics where each topic is a sublist containing the topic index, topic weight, and a space-separated list of keywords.
        """
        topic_keys_path = self._metadata_get([self.CANONICAL_TOPIC_KEYS_KEY])
        if not topic_keys_path:
            raise LexosException(
                f"No topic keys have been set. Please designate a path for `{self.CANONICAL_TOPIC_KEYS_KEY}` when you train your topic model."
            )
        with open(self.metadata[self.CANONICAL_TOPIC_KEYS_KEY], "r") as f:
            return [line.strip().split("\t") for line in f.readlines()]

    @property
    def vocab_size(self) -> int:
        """Get the vocabulary size of documents in the model."""
        if "vocab_size" in self.metadata:
            return self.metadata["vocab_size"]
        else:
            return 0

    def _import_training_data(
        self,
        training_data: list[str],
        path_to_training_data: Optional[str] = None,
        keep_sequence: bool = True,
        remove_stopwords: bool = True,
        preserve_case: bool = True,
        use_pipe_from: Optional[str] = None,
        training_ids: Optional[list[int]] = None,
    ) -> None:
        """Import training data from a list of documents.

        Args:
            training_data (list[str]): A list of documents to import.
            keep_sequence (bool): Whether to keep the word sequence in the documents.
            remove_stopwords (bool): Whether to remove stopwords from the documents.
            preserve_case (bool): Whether to preserve the case of the documents.
            use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
            training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
        """
        # Save the training data file
        path_to_training_data = (
            path_to_training_data
            if path_to_training_data is not None
            else os.path.join(self.model_dir, "training_data.txt")
        )
        path_to_formatted_training_data = os.path.join(
            self.model_dir, "training_data.mallet"
        )
        training_data_file = open(path_to_training_data, "w", encoding="utf-8")
        for i, doc in enumerate(training_data):
            # Remove newlines and carriage returns from the document
            doc = re.sub("[\r\n]+", " ", doc).strip()
            if training_ids:
                training_data_file.write(f"{training_ids[i]}\tno_label\t{doc}\n")
            else:
                training_data_file.write(f"{i}\tno_label\t {doc}\n")
        training_data_file.close()
        self.metadata["path_to_training_data"] = path_to_training_data
        self.metadata["path_to_formatted_training_data"] = (
            path_to_formatted_training_data
        )
        self.metadata["num_docs"] = len(training_data)
        # WARNING: Tokenisation relies on whitespace, so it may not be accurate for all languages
        self.metadata["mean_num_tokens"] = np.mean(
            [len(doc.split()) for doc in training_data]
        ).item()
        self.metadata["vocab_size"] = len(
            list(set([token for doc in training_data for token in doc.split()]))
        )

        # Build and execute the command to format the training data for MALLET
        cmd = f"{self.path_to_mallet or 'mallet'} import-file --input {path_to_training_data} --output {path_to_formatted_training_data}"
        if keep_sequence:
            cmd += " --keep-sequence"
        if remove_stopwords:
            cmd += " --remove-stopwords"
        if preserve_case:
            cmd += " --preserve-case"
        if use_pipe_from:
            cmd += f" --use-pipe-from {use_pipe_from}"
        msg.info(cmd)
        os.system(cmd)

    @validate_call(config=model_config)
    def import_data(
        self,
        training_data: list[str],
        path_to_training_data: str = None,
        keep_sequence: bool = True,
        preserve_case: bool = True,
        remove_stopwords: bool = True,
        use_pipe_from: Optional[str] = None,
        training_ids: Optional[list[int]] = None,
    ) -> None:
        """Convenience wrapper to import a list of documents and format them for MALLET.

        Args:
            training_data (list[str]): List of document texts.
            path_to_training_data (str): Path to write raw training text file. If None, will default to model directory.
            keep_sequence (bool): Keep token sequence.
            preserve_case (bool): Preserve case.
            remove_stopwords (bool): Remove stopwords.
            use_pipe_from (Optional[str]): Pipe filename for MALLET import.
            training_ids (Optional[list[int]]): Optional training IDs mapping.
        """
        # Validate training_data is a list of strings
        if isinstance(training_data, bool) or not isinstance(training_data, list):
            raise LexosException(
                "Invalid `training_data` argument: expected a list of document strings."
            )
        for doc in training_data:
            if isinstance(doc, bool) or not isinstance(doc, str):
                raise LexosException(
                    "Invalid `training_data` element: expected document text (str) for each item."
                )

        # Determine output paths if not provided
        if not path_to_training_data:
            model_base = self.model_dir if self.model_dir else os.getcwd()
            path_to_training_data = os.path.join(model_base, "training_data.txt")
        self._import_training_data(
            training_data,
            path_to_training_data,
            keep_sequence,
            remove_stopwords,
            preserve_case,
            use_pipe_from,
            training_ids,
        )

    def _setup_wordcloud(
        self, round_mask, max_terms, **kwargs: dict[str, Any]
    ) -> WordCloud:
        """Set up the word cloud object.

        Args:
            round_mask (bool): Whether to use a round mask for the word cloud.
            max_terms (int): The maximum number of keywords to display.
            **kwargs (dict[str, Any])): Additional keyword arguments for the WordCloud object.

        Returns:
            WordCloud: A configured WordCloud object.
        """
        # Define a mask to make the word cloud round (just some eye candy)
        if round_mask:
            x, y = np.ogrid[:300, :300]
            mask = (x - 150) ** 2 + (y - 150) ** 2 > 130**2
            mask = 255 * mask.astype(int)
        else:
            mask = None

        # Configure the word cloud object
        options = {
            "background_color": "white",
            "mask": mask,
            "contour_width": 0.1,
            "contour_color": "white",
            "max_words": max_terms,
            "min_font_size": 10,
            "max_font_size": 150,
            "random_state": 42,
            "colormap": "Dark2",
        }
        for k, v in kwargs.items():
            options[k] = v

        return WordCloud(**options)

    def _track_progress(
        self, mallet_cmd: str, num_iterations: int, verbose: bool = True
    ) -> None:
        """Track the progress of the modeling.

        Args:
            mallet_cmd (str): The MALLET command to run.
            num_iterations (int): The number of iterations for the model.
            verbose (bool): Whether to print the MALLET output.

        Notes:
            - Prints MALLET output and updates the progress bar in 10% increments.
        """
        console = Console()
        # NOTE: This is a hack to make Jupyter notebooks in VS Code display all lines
        # in the same cell. It may cause undesirable results in other environments and
        # needs further testing. See https://github.com/Textualize/rich/issues/3483.
        if verbose:
            console.is_jupyter = False

        # Create a progress display with rich
        with Progress(
            TextColumn("[progress.description]{task.description}"),
            BarColumn(),
            TaskProgressColumn(),
            TimeElapsedColumn(),
        ) as progress:
            # Create a task with a total of 100 (percentage)
            task = progress.add_task("[blue]Training model...", total=100)

            # Run the MALLET command
            p = subprocess.Popen(
                mallet_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True
            )

            # Regex to match progress information
            prog = re.compile(r"\<([^\)]+)\>")

            # Track the last reported progress percentage to avoid duplicate updates
            last_progress = -1

            # Process the output line by line
            while p.poll() is None:
                line = p.stdout.readline().decode()
                if verbose:
                    # Print MALLET output without disrupting progress
                    console.print(line, end="")

                # Keep track of modeling progress
                try:
                    # A float indicating the percentage, which is output by MALLET
                    this_iter = float(prog.match(line).groups()[0])
                    current_progress = int(100.0 * this_iter / num_iterations)

                    # Only update on 10% multiples and avoid duplicate updates
                    if current_progress % 10 == 0 and current_progress > last_progress:
                        # Update to the current progress percentage
                        progress.update(task, completed=this_iter)
                        last_progress = current_progress
                    if current_progress == 100:
                        progress.update(
                            task, description="[green]Complete", completed=100
                        )
                except AttributeError:  # Not every line will match.
                    pass

    @validate_call(config=model_config)
    def get_keys(
        self,
        num_topics: int = None,
        topics: list[int] = None,
        num_keys: int = 10,
        as_df: bool = False,
    ) -> str | Styler:
        """Get a string representation of the topic keys of the model.

        Args:
            num_topics (int): The number of topics to get keys for. If None, get keys for all topics.
            topics (list[int]): A list of topic indices to get keys for. If None, get keys for all topics.
            num_keys (int): The number of keys to output for each topic.
            as_df (bool): Whether to return the result as a pandas DataFrame instead of a string.

        Returns:
            str | Styler: A string or DataFrame representation of the topic keys. The DataFrame is styled for presentation in a Jupyter notebook to prevent clipping of the keywords in a Jupyter notebook. If you need an actual `DataFrame` object, reference `df.data`.
        """
        num_available_topics = len(self.topic_keys)
        if num_topics and not topics:
            if num_topics > num_available_topics:
                raise IndexError(
                    f"Requested num_topics={num_topics}, but only {num_available_topics} topics are available."
                )
            topic_keys = self.topic_keys[:num_topics]
        elif topics:
            # Validate all indices
            for i in topics:
                if i < 0 or i >= num_available_topics:
                    raise IndexError(
                        f"Topic index {i} is out of range. Valid indices are 0 to {num_available_topics - 1}."
                    )
            topic_keys = [self.topic_keys[i] for i in topics]
        else:
            topic_keys = self.topic_keys
        output = ""
        for topic in topic_keys:
            keywords = " ".join(topic[2].split()[:num_keys])
            output += f"Topic {topic[0]}\t{topic[1]}\t{keywords}\n"
        if as_df:
            data = []
            for topic in topic_keys:
                keywords = " ".join(topic[2].split()[:num_keys])
                data.append(
                    {"Topic": topic[0], "Label": topic[1], "Keywords": keywords}
                )
            df = pd.DataFrame(data)
            show_index = True  # or False
            offset = 2 if show_index else 1
            nth = df.columns.get_loc("Keywords") + offset

            css = [
                # header cell of Keywords column
                {
                    "selector": f"thead th:nth-child({nth})",
                    "props": [("text-align", "left")],
                },
                # the column cells
                {
                    "selector": f"td.col{df.columns.get_loc('Keywords')}",
                    "props": [("text-align", "left")],
                },
            ]

            styled_df = df.style.set_table_styles(css).set_properties(
                subset=["Keywords"], **{"text-align": "left"}
            )
            return styled_df
        return output

    @validate_call(config=model_config)
    def get_top_docs(
        self, topic=0, n=10, metadata: pd.DataFrame = None, as_str: bool = False
    ) -> pd.DataFrame | str:
        """Get the top n documents for a given topic.

        Args:
            topic (int): Topic number.
            n (int): Number of top documents to return.
            metadata (pd.DataFrame): Dataframe with the metadata in the same order as the training data (optional).
            as_str (bool): Whether to return the result as a string instead of a dataframe.

        Returns:
            A pd.DataFrame or str: A dataframe with the top n documents for the given topic, or a string representation of the dataframe.

        Notes:
            - The metadata must be in the same order as the training data.
            - The document text will get ellided by the maximum width of a pandas column. An easy way to see the full text is to set `as_str=True` and output the result with a print statement. You can also use the pandas API to extract the information with something like `top_docs.Document.tolist()`.
        """
        # Ensure that the path to doc-topic distributions exists (resolved via canonical keys)
        if not self._metadata_has([self.CANONICAL_DOC_TOPIC_KEY]):
            raise LexosException(
                "No topic distributions have been set. Please designate a path to the doc-topic distributions (e.g. `path_to_topic_distributions`) when you train your topic model."
            )

        if "path_to_training_data" not in self.metadata:
            raise LexosException(
                "No training data has been set. Please designate a path for `path_to_training_data` when you train your topic model."
            )

        # Read the training data file
        with open(self.metadata["path_to_training_data"], "r", encoding="utf-8") as f:
            training_data = f.readlines()
        training_data = [
            line.split("\t")[2].strip() for line in training_data
        ]  # Skip the id and label

        # Validate topic index against model's known number of topics (0-based)
        try:
            topic = int(topic)
        except Exception:
            raise ValueError("Topic index must be an integer")

        num_topics = None
        # Try the reliable metadata if present
        if "num_topics" in self.metadata:
            try:
                num_topics = int(self.metadata["num_topics"])
            except Exception:
                num_topics = None
        # Fall back to topic_keys if available
        if num_topics is None:
            try:
                num_topics = len(self.topic_keys)
            except Exception:
                num_topics = None
        # As a last resort, infer from distributions
        distribution_len = None
        if len(self.distributions) > 0:
            # ensure all distributions have the same length; otherwise raise
            lengths = set(len(d) for d in self.distributions)
            if len(lengths) > 1:
                raise LexosException(
                    "Topic distribution lengths are inconsistent across documents; check `path_to_topic_distributions` format."
                )
            distribution_len = next(iter(lengths))
            if num_topics is None:
                num_topics = distribution_len
        if num_topics is None:
            raise LexosException(
                "Model does not have topic information yet. Train or load a model first."
            )
        # If we have both a metadata num_topics and inferred distribution length, they should match.
        if (
            distribution_len is not None
            and num_topics is not None
            and distribution_len != num_topics
        ):
            raise LexosException(
                f"Mismatch between declared number of topics ({num_topics}) and distribution vector length ({distribution_len}). Check your training outputs."
            )

        if not (0 <= topic < num_topics):
            raise ValueError(
                f"Invalid topic index {topic}. Valid topic indices are 0..{num_topics - 1} (0-based)."
            )

        # Combine the distribution and training data, then convert to a dataframe
        distribution_data = [
            (_distribution[topic], _document)
            for _distribution, _document in zip(self.distributions, training_data)
        ]
        df = pd.DataFrame(distribution_data, columns=["Distribution", "Document"])
        df.index.name = "Doc ID"

        # If metadata is provided, concatenate it to the dataframe
        if metadata is not None:
            df = pd.concat([df, metadata], axis=1)

        # Sort the dataframe by distribution and return the top n documents
        if as_str:
            return (
                df.sort_values(by="Distribution", ascending=False).head(n).to_string()
            )
        return df.sort_values(by="Distribution", ascending=False).head(n)

    @validate_call(config=model_config)
    def get_topic_term_probabilities(
        self, topics: Optional[int | list[int]] = None, n: int = 5, as_df: bool = False
    ) -> str | pd.DataFrame:
        """Get a string representation of the term distribution for a given topic.

        Args:
            topics (int | list[int]): Topic number. If None, get the probabilities for all topics.
            n (int): The number of keywords to display.
            as_df (bool): Whether to display the result as a string or a pandas DataFrame.

        Returns:
            str: A string representation of the term distribution for the given topic.
        """
        if isinstance(topics, int):
            topics = [topics]
        topic_term_probability_dict = self.load_topic_term_distributions()
        # Build either a string (legacy behavior) or a DataFrame with columns
        # Topic | Term | Probability based on the `as_df` parameter.
        if as_df:
            rows = []
            for _topic, _term_probability_dict in topic_term_probability_dict.items():
                if topics is None or _topic in topics:
                    for _term, _probability in sorted(
                        _term_probability_dict.items(), key=lambda x: x[1], reverse=True
                    )[:n]:
                        rows.append(
                            {
                                "Topic": _topic,
                                "Term": _term,
                                "Probability": _probability,
                            }
                        )
            df = pd.DataFrame(rows)
            return df
        result = ""
        for _topic, _term_probability_dict in topic_term_probability_dict.items():
            if topics is None or _topic in topics:
                result += f"Topic {_topic}\n"
                for _term, _probability in sorted(
                    _term_probability_dict.items(), key=lambda x: x[1], reverse=True
                )[:n]:
                    result += f"\t{_term}: {_probability}\n"
                result += "\n"
        return result

    @validate_call(config=model_config)
    def import_dir(
        self,
        data_source: str | list[str],
        keep_sequence: bool = True,
        preserve_case: bool = True,
        remove_stopwords: bool = True,
        use_pipe_from: Optional[str] = None,
        training_ids: Optional[list[int]] = None,
    ) -> None:
        """Read training data from directories and save formatted training data file.

        Args:
            data_source (str | list[str]): A directory or list of directories to import.
            keep_sequence (bool): Whether to keep the word sequence in the documents.
            preserve_case (bool): Whether to preserve the case of the documents.
            remove_stopwords (bool): Whether to remove stopwords from the documents.
            use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
            training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
        """
        # Explicitly validate data_source to reject booleans
        if isinstance(data_source, bool):
            raise LexosException(
                "Invalid `data_source` argument: expected a directory path or list of paths, not a boolean."
            )
        training_data = read_dirs(ensure_list(data_source))
        self._import_training_data(
            training_data,
            path_to_training_data=None,
            keep_sequence=keep_sequence,
            remove_stopwords=remove_stopwords,
            preserve_case=preserve_case,
            use_pipe_from=use_pipe_from,
            training_ids=training_ids,
        )

    @validate_call(config=model_config)
    def import_docs(
        self,
        data_source: str | list[str],
        keep_sequence: bool = True,
        preserve_case: bool = True,
        remove_stopwords: bool = True,
        use_pipe_from: Optional[str] = None,
        training_ids: Optional[list[int]] = None,
    ) -> None:
        """Read training data from docs and save formatted training data file.

        Args:
            data_source (str | list[str]): A doc or list of docs to import.
            keep_sequence (bool): Whether to keep the word sequence in the documents.
            preserve_case (bool): Whether to preserve the case of the documents.
            remove_stopwords (bool): Whether to remove stopwords from the documents.
            use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
            training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
        """
        if isinstance(data_source, bool):
            raise LexosException(
                "Invalid `data_source` argument: expected a doc or list of docs, not a boolean."
            )
        docs = ensure_list(data_source)
        training_data = [
            f"{i}\t\t{doc.text}" if isinstance(doc, Doc) else f"{i}\t\t{doc}"
            for i, doc in enumerate(docs)
        ]
        self._import_training_data(
            training_data,
            path_to_training_data=None,
            keep_sequence=keep_sequence,
            remove_stopwords=remove_stopwords,
            preserve_case=preserve_case,
            use_pipe_from=use_pipe_from,
            training_ids=training_ids,
        )

    @validate_call(config=model_config)
    def import_file(
        self,
        data_source: str | list[str],
        keep_sequence: bool = True,
        preserve_case: bool = True,
        remove_stopwords: bool = True,
        use_pipe_from: Optional[str] = None,
        training_ids: Optional[list[int]] = None,
    ) -> None:
        """Read training data from file and save formatted training data file.

        Args:
            data_source (str | list[str]): A file or list of files to import.
            keep_sequence (bool): Whether to keep the word sequence in the documents.
            preserve_case (bool): Whether to preserve the case of the documents.
            remove_stopwords (bool): Whether to remove stopwords from the documents.
            use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
            training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
        """
        if isinstance(data_source, bool):
            raise LexosException(
                "Invalid `data_source` argument: expected a file path or list of paths, not a boolean."
            )
        training_data = read_file(ensure_list(data_source))
        self._import_training_data(
            training_data,
            path_to_training_data=None,
            keep_sequence=keep_sequence,
            remove_stopwords=remove_stopwords,
            preserve_case=preserve_case,
            use_pipe_from=use_pipe_from,
            training_ids=training_ids,
        )

    def load_topic_term_distributions(self) -> dict[str, float]:
        """Load the topic-term distributions from a file.

        Returns:
            dict[str, float]: A dictionary of all topic-term distributions.
        """
        # Ensure that the path to a term weights file has been set.
        term_weight_path = self._metadata_get([self.CANONICAL_TERM_WEIGHTS_KEY])
        if term_weight_path is None:
            raise LexosException(
                f"No term weights have been set. Please designate a path to the term weights file (e.g. `{self.CANONICAL_TERM_WEIGHTS_KEY}`) when you train your topic model."
            )
        topic_term_weight_dict = defaultdict(lambda: defaultdict(float))
        topic_sum_dict = defaultdict(float)
        try:
            with open(term_weight_path, "r") as f:
                for _line in f:
                    if not _line.strip():
                        continue
                    parts = _line.strip().split("\t")
                    if len(parts) != 3:
                        # Malformed line
                        raise ValueError(
                            f"Malformed line in term weights file: '{_line.strip()}'"
                        )
                    _topic, _term, _weight = parts
                    try:
                        weight_f = float(_weight)
                    except Exception:
                        raise ValueError(
                            f"Invalid weight value '{_weight}' in line: '{_line.strip()}'"
                        )
                    topic_term_weight_dict[_topic][_term] = weight_f
                    topic_sum_dict[_topic] += weight_f
        except FileNotFoundError:
            # Surface file not found as filesystem error
            raise

        topic_term_probability_dict = defaultdict(lambda: defaultdict(float))
        for _topic, _term_weight_dict in topic_term_weight_dict.items():
            for _term, _weight in _term_weight_dict.items():
                topic_term_probability_dict[int(_topic)][_term] = (
                    _weight / topic_sum_dict[_topic]
                )

        return topic_term_probability_dict

    @validate_call(config=model_config)
    def plot_categories_by_topic_boxplots(
        self,
        categories: list[str],
        topics: Optional[int | list[int]] = None,
        output_path: Optional[str] = None,
        target_labels: Optional[list[str]] = None,
        num_keys: int = 5,
        figsize: Optional[tuple[int, int]] = (6, 6),
        font_scale: Optional[float] = 1.2,
        color: Optional[ColorType] = "lightblue",
        show: Optional[bool] = True,
        title: Optional[str] = None,
        overlay: Optional[str] = "strip",
        overlay_kws: Optional[dict[str, Any]] = None,
        topic_distributions: Optional[list[list[float]]] = None,
    ) -> Figure | list[Figure]:
        """Plot boxplots showing the distribution of topic probabilities for each category.

        Args:
            categories (list[str]): The labels to use for the categories.
            topics (int | list[int]): The index of the topic to plot.
            output_path (str): The path to save the figure.
            target_labels (list[str]): Unique labels for categories to classify.
            num_keys (int): The number of keywords to display.
            figsize: (Optional[tuple[int, int]]): The dimensions of the figure.
            font_scale (Optional[float]): The font scale for the figure.
            color (Optional[ColorType]): The color to use for the heatmap boxes. A matplotlib ColorType name or object.
            show (Optional[bool]): Whether to show the figure.
            title (Optional[str]): Optional figure title. If not supplied, each plot will use a default title of
                `Topic {topic}: {keywords}`.
            overlay (Optional[str]): How to display the individual points overlaid on each boxplot. Supported
                values are 'strip' (default), 'swarm', or 'none'.
            overlay_kws (Optional[dict]): Keyword arguments passed to the chosen overlay plotting method
                (`seaborn.stripplot` or `seaborn.swarmplot`).

        Returns:
            Figure | list[Figure]: The boxplot showing the topic associations by category.
        """
        # Load topic_keys
        topic_keys = self.topic_keys

        # Ensure that topics is a list
        if topics is None:
            topics = list(range(len(topic_keys)))
        elif isinstance(topics, int):
            topics = [topics]

        # Ensure there are topic_labels
        if not target_labels:
            target_labels = list(set(categories))

        # Combine the labels and distributions into a dataframe.
        figs = []
        import os

        # Use user-provided topic_distributions if given, else default to self.distributions
        distributions = (
            topic_distributions
            if topic_distributions is not None
            else self.distributions
        )

        for topic in topics:
            keywords = " ".join(topic_keys[topic][2].split()[:num_keys])

            dicts_to_plot = []
            for _label, _distribution in zip(categories, distributions):
                if not target_labels or _label in target_labels:
                    dicts_to_plot.append(
                        {
                            "Probability": float(_distribution[topic]),
                            "Category": _label,
                            "Topic": keywords,
                        }
                    )
            df_to_plot = pd.DataFrame(dicts_to_plot)

            # Validate overlay option
            if overlay not in ("strip", "swarm", "none", None):
                raise LexosException(
                    "Invalid `overlay` argument: expected 'strip', 'swarm', or 'none'."
                )

            # Show the final plot
            sns.set_theme(style="ticks", font_scale=font_scale)
            # Create a figure/axes so we can overlay points for small datasets
            if figsize:
                fig, ax = plt.subplots(figsize=figsize)
            else:
                fig, ax = plt.subplots()
            sns.boxplot(
                data=df_to_plot,
                x="Category",
                y="Probability",
                color=color,
                ax=ax,
                showmeans=True,
            )
            # Overlay data points so users can see the raw values when there are
            # too few observations to form a full box
            overlay_kws = dict(overlay_kws or {})
            try:
                if overlay == "strip" or overlay is None:
                    sns.stripplot(
                        data=df_to_plot,
                        x="Category",
                        y="Probability",
                        color=overlay_kws.pop("color", "black"),
                        size=overlay_kws.pop("size", 4),
                        jitter=overlay_kws.pop("jitter", True),
                        ax=ax,
                        **overlay_kws,
                    )
                elif overlay == "swarm":
                    sns.swarmplot(
                        data=df_to_plot,
                        x="Category",
                        y="Probability",
                        color=overlay_kws.pop("color", "black"),
                        size=overlay_kws.pop("size", 4),
                        ax=ax,
                        **overlay_kws,
                    )
                # if overlay == 'none', do nothing
            except Exception:
                # Overlay plotting is optional; ignore any backend failures
                pass
            sns.despine()
            plt.xticks(rotation=45, ha="right")
            # Set either the provided title or a sensible default including topic index and top keys
            if title is None:
                ax.set_title(f"Topic {topic}: {keywords}")
            else:
                # Use a figure-level title to avoid per-subplot clobbering
                fig.suptitle(title)
            plt.tight_layout()
            # Save each plot to a unique file if output_path is set
            if output_path:
                base, ext = os.path.splitext(output_path)
                save_path = f"{base}_topic{topic}{ext}"
                fig.savefig(save_path)
            figs.append(fig)
            if show:
                plt.show()
            plt.close(fig)
        if show:
            return None
        # If this function only generated a single figure, return it.
        if len(figs) == 1:
            return figs[0]
        return figs

    @validate_call(config=model_config)
    def plot_categories_by_topics_heatmap(
        self,
        categories: list[str],
        output_path: Path | str = None,
        target_labels: list[str] = None,
        num_keys: int = 5,
        figsize: Optional[tuple[int, int]] = None,
        font_scale: Optional[float] = 1.2,
        cmap: Optional[ColorType] = sns.cm.rocket_r,
        show: Optional[bool] = True,
        title: Optional[str] = None,
        topic_distributions: Optional[list[list[float]]] = None,
    ) -> Figure:
        """Plot heatmap showing topics by category.

        Args:
            categories (list[str]): The categories to use to classify topics.
            output_path (Path | str): The path to save the figure.
            target_labels (list[str]): Unique labels for categories to classify.
            num_keys (int): The number of keywords to display.
            figsize: (Optional[tuple[int, int]]): The dimensions of the figure.
            font_scale (Optional[float]): The font scale for the figure.
            cmap (Optional[ColorType]): The colormap to use for the heatmap. A matplotlib colormap name or object, or list of colors.
            show (Optional[bool]): Whether to show the figure.
            title (Optional[str]): Optional title for the figure. If not supplied, defaults to "Topics by Category (N=x)".

        Returns:
            Figure: The heatmap showing the topic associations by category.
        """
        # Load topic_keys
        topic_keys = self.topic_keys

        # Use user-provided topic_distributions if given, else default to self.distributions
        distributions = (
            topic_distributions
            if topic_distributions is not None
            else self.distributions
        )

        dicts_to_plot = []
        for _category_label, _distribution in zip(categories, distributions):
            if not target_labels or _category_label in target_labels:
                for _topic, _probability in enumerate(_distribution):
                    keywords = " ".join(topic_keys[_topic][2].split()[:num_keys])
                    if num_keys:
                        if keywords:
                            _topic_label = f"Topic {_topic}: {keywords}"
                        else:
                            _topic_label = f"Topic {_topic}"
                    else:
                        _topic_label = f"Topic {_topic}"
                    dicts_to_plot.append(
                        {
                            "Probability": float(_probability),
                            "Category": _category_label,
                            "Topic": _topic_label,
                        }
                    )

        # Create a dataframe, format it for the heatmap function, and normalize the columns.
        df_to_plot = pd.DataFrame(dicts_to_plot)
        df_wide = df_to_plot.pivot_table(
            index="Category", columns="Topic", values="Probability"
        )
        df_norm_col = (df_wide - df_wide.mean()) / df_wide.std()

        # Ensure the columns are ordered by numeric topic index where available (natural sort)
        def _topic_key(col):
            # Match 'Topic <num>' possibly followed by ': ...'
            try:
                m = re.match(r"Topic\s+(\d+)", str(col))
                if m:
                    return (0, int(m.group(1)))
            except Exception:
                pass
            return (1, str(col))

        try:
            ordered_cols = sorted(list(df_norm_col.columns), key=_topic_key)
            df_norm_col = df_norm_col[ordered_cols]
        except Exception:
            # If columns are not iterable or sorting fails (e.g., custom objects),
            # we leave the DataFrame as-is rather than raising an exception.
            pass

        # Show the final plot
        sns.set_theme(style="ticks", font_scale=font_scale)
        if figsize:
            fig, ax = plt.subplots(figsize=figsize)
        else:
            fig, ax = plt.subplots()
        ax = sns.heatmap(df_norm_col, cmap=cmap, ax=ax)
        # Set either provided title or a sensible default that indicates the content and the number of topics
        if title is None:
            try:
                num_topics = len(df_norm_col.columns)
            except Exception:
                num_topics = None
            if num_topics is not None:
                title = f"Topics by Category ({num_topics} Topics)"
            else:
                title = "Topics by Category"
        if title:
            fig.suptitle(title)
        ax.xaxis.tick_top()
        ax.xaxis.set_label_position("top")
        plt.xticks(rotation=30, ha="left")
        plt.tight_layout(rect=[0, 0, 1, 0.95])
        if output_path:
            plt.savefig(output_path)
        if show:
            plt.show()
            return None
        else:
            plt.close()
            return fig

    @validate_call(config=model_config)
    def topic_clouds(
        self,
        topics: Optional[int | list[int]] = None,
        max_terms: Optional[int] = 30,
        figsize: Optional[tuple[int, int]] = (10, 10),
        output_path: Optional[str] = None,
        show: Optional[bool] = True,
        round_mask: Any = True,
        title: Optional[str] = None,
        **kwargs: Any,
    ) -> Figure:
        """Get a `MultiCloud` object for the topic-term distributions.

        This method converts the internal topic-term probability dictionary
        to a DataFrame (topics as rows) and constructs a `lexos.visualization.cloud.MultiCloud`
        instance for visualization.

        Parameters:
            topics (Optional[int | list[int]]): Topics to include (rows). If None, show all.
            max_terms (Optional[int]): Maximum number of top keywords to display per topic. Maps
                to the `limit` parameter of `MultiCloud` and `max_words` in `opts` when not set.
            figsize (Optional[tuple[int, int]]): Size of the overall figure.
            output_path (Optional[str]): If provided, the MultiCloud figure will be saved to this path.
            show (Optional[bool]): If True, the figure will be displayed in the current environment.
            round_mask (bool|int|str): Either a boolean indicating whether to use a default circular mask
                (True maps to radius 120; False disables mask), or an integer radius to use for a custom
                mask. Strings containing integer values will be converted. Passing invalid values will
                raise a `LexosException`.
            title (Optional[str]): Optional title for the overall MultiCloud figure. If None, a default
                of "Topic Clouds (N topics)" will be used.
            **kwargs (Any): Additional keyword arguments. Use `opts` to pass wordcloud options for each cloud.

        Returns:
            Figure: If `show` is False, returns a Matplotlib Figure object created by `MultiCloud`.
            Otherwise returns None after displaying the figure.

        Notes:
            The labels displayed above each word cloud will be of the form `Topic 0`,
            `Topic 1`, etc.; keywords are not included in the labels to keep the
            display uncluttered.
        """
        sns.set_theme()

        # Load topic-term probabilities and convert to DataFrame with topics as rows
        topic_term_probability_dict = self.load_topic_term_distributions()
        df = pd.DataFrame.from_dict(topic_term_probability_dict, orient="index").fillna(
            0
        )

        # Filter the DataFrame to include only the specified topics (rows)
        if topics is not None:
            df = df.iloc[ensure_list(topics)]

        # Build options dict for MultiCloud
        opts = kwargs.get("opts", {})
        # Default to a white background unless overridden
        opts.setdefault("background_color", "white")
        # Ensure `max_words` is present if not provided, mapping from max_terms
        if "max_words" not in opts and max_terms is not None:
            opts["max_words"] = max_terms

        # Convert round_mask boolean or int into the radius integer expected by MultiCloud
        if isinstance(round_mask, bool):
            round_radius = 120 if round_mask else 0
        else:
            try:
                round_radius = int(round_mask) if round_mask is not None else 0
            except Exception:
                raise LexosException(
                    "Invalid `round_mask` argument: expected a boolean or integer radius."
                )

        # Build simple numeric labels for each topic to avoid clutter
        labels = [f"Topic {i}" for i in range(len(df))]

        # Build figure_opts forwarding and set a white facecolor by default
        figure_opts = kwargs.get("figure_opts", {})
        figure_opts.setdefault("facecolor", "white")

        # Create the MultiCloud object with updated args compatible with the class
        # If no explicit title supplied, create a helpful default
        if title is None:
            try:
                num_topics = len(df)
            except Exception:
                num_topics = None
            if num_topics is not None:
                title = f"Topic Clouds ({num_topics} topics)"
            else:
                title = "Topic Clouds"

        mc = MultiCloud(
            data=df,
            limit=max_terms,
            figsize=figsize,
            opts=opts,
            round=round_radius,
            labels=labels,
            figure_opts=figure_opts,
            title=title,
        )

        # Save the file if requested
        if output_path:
            mc.save(output_path)

        # Show the file if requested
        if show:
            mc.show()
            return None
        else:
            return mc.fig

    @validate_call(config=model_config)
    def plot_topics_over_time(
        self,
        times: list,
        topic_index: int,
        topic_distributions: Optional[list[list[float]]] = None,
        topic_keys: Optional[list[list[str]]] = None,
        output_path: Optional[str] = None,
        figsize: Optional[tuple[int, int]] = (7, 2.5),
        font_scale: Optional[float] = 1.2,
        color: Optional[ColorType] = "cornflowerblue",
        show: Optional[bool] = True,
        title: Optional[str] = None,
    ) -> Figure | None:
        """Plot the probability of a topic over time.

        Args:
            times (list): List of time points corresponding to each document (must be same length as topic_distributions).
            topic_index (int): The index of the topic to plot.
            topic_distributions (Optional[list[list[float]]]): If provided, a list of topic distributions per document. If None, uses `self.distributions`.
            topic_keys (Optional[list[list[str]]]): If provided, a list of topic keys; otherwise uses `self.topic_keys`.
            output_path (Optional[str]): Path to save the output plot. If None the plot is shown but not saved.
            figsize (Optional[tuple[int,int]]): Figure size.
            font_scale (Optional[float]): Seaborn font_scale.
            color (Optional[ColorType]): Line color.
            show (Optional[bool]): Whether to display the figure.
            title (Optional[str]): Optional figure title. Will default to the topic's keywords if not supplied.

        Returns:
            Figure | None: The matplotlib figure if `show=False`, otherwise None.
        """
        # Use provided distributions / keys or fall back to instance data
        distributions = (
            topic_distributions
            if topic_distributions is not None
            else self.distributions
        )
        topic_keys = topic_keys if topic_keys is not None else self.topic_keys

        if distributions is None or len(distributions) == 0:
            raise LexosException("No topic distributions available to plot.")

        if topic_index < 0:
            raise ValueError("topic_index must be a non-negative integer")

        if len(times) != len(distributions):
            raise LexosException(
                "Length mismatch: 'times' must be the same length as topic_distributions"
            )

        data_dicts = []
        for j, _distribution in enumerate(distributions):
            if len(_distribution) <= topic_index:
                # skip documents that don't cover the requested topic index
                continue
            data_dicts.append(
                {"Probability": _distribution[topic_index], "Time": times[j]}
            )

        if len(data_dicts) == 0:
            raise LexosException(f"No data found for topic index {topic_index}")

        data_df = pd.DataFrame(data_dicts)

        sns.set_theme(style="ticks", font_scale=font_scale)
        fig, ax = plt.subplots(figsize=figsize)
        sns.lineplot(data=data_df, x="Time", y="Probability", color=color, ax=ax)
        ax.set_xlabel("Time")
        ax.set_ylabel("Topic Probability")

        # Default title
        if title is None:
            try:
                keywords = " ".join(topic_keys[topic_index][2].split()[:5])
                title = f"Topic {topic_index}: {keywords}"
            except Exception:
                title = f"Topic {topic_index}"
        if title:
            fig.suptitle(title)

        plt.tight_layout()
        sns.despine()
        if output_path:
            fig.savefig(output_path)
        if show:
            plt.show()
            return None
        else:
            return fig

    @validate_call(config=model_config)
    def train(
        self,
        num_topics: int = 20,
        num_iterations: Optional[int] = 100,
        optimize_interval: Optional[int] = 10,
        verbose: Optional[bool] = True,
        # Common output paths: caller may pass canonical keys or path_to_* names
        path_to_model: Optional[str] = None,
        path_to_state: Optional[str] = None,
        path_to_topic_keys: Optional[str] = None,
        path_to_topic_distributions: Optional[str] = None,
        path_to_term_weights: Optional[str] = None,
        path_to_diagnostics: Optional[str] = None,
        path_to_inferencer: Optional[str] = None,
    ) -> None:
        """Train the topic model using MALLET.

        Args:
            num_topics (int): The number of topics to train.
            num_iterations (int): The number of iterations to train for.
            optimize_interval (int): The interval at which to optimize the model.
            verbose (bool): Whether to print the MALLET output.
            path_to_inferencer (Optional[str]): Optional output filename for saving a trained inferencer object
                that can be used with `mallet infer-topics`. If not provided, defaults to
                `model_dir/inferencer.mallet`.
        """
        path_to_formatted_training_data = os.path.join(
            self.model_dir, "training_data.mallet"
        )

        # Build the MALLET command
        cmd = f"{self.path_to_mallet or 'mallet'} train-topics"
        flags = {
            "input": path_to_formatted_training_data,
            "num-topics": num_topics,
            "num-iterations": num_iterations,
            "output-state": path_to_state
            or os.path.join(self.model_dir, "topic-state.gz"),
            "output-topic-keys": path_to_topic_keys
            or os.path.join(self.model_dir, "topic-keys.txt"),
            "output-doc-topics": path_to_topic_distributions
            or os.path.join(self.model_dir, "doc-topic.txt"),
            "topic-word-weights-file": path_to_term_weights
            or os.path.join(self.model_dir, "topic-weights.txt"),
            "diagnostics-file": path_to_diagnostics
            or os.path.join(self.model_dir, "diagnostics.xml"),
            # Optional inferencer filename path to save a trained inferencer for later inference
            "inferencer-filename": path_to_inferencer
            or os.path.join(self.model_dir, "inferencer.mallet"),
            "optimize-interval": optimize_interval,
        }

        for k, v in flags.items():
            if v:
                # Save file names in the model directory if they are not absolute paths
                if isinstance(v, str) and len(Path(v).parts) == 1:
                    v = f"{self.metadata['model_directory']}/{v}"
                cmd += f" --{k} {v}"
                # Set canonical metadata keys for common outputs so consumers can
                # rely on a single key. Map train flags directly to the
                # canonical metadata keys.
                if k == "output-doc-topics":
                    self.metadata[self.CANONICAL_DOC_TOPIC_KEY] = v
                if k == "topic-word-weights-file":
                    self.metadata[self.CANONICAL_TERM_WEIGHTS_KEY] = v
                if k == "output-topic-keys":
                    self.metadata[self.CANONICAL_TOPIC_KEYS_KEY] = v
                if k == "inferencer-filename":
                    self.metadata[self.CANONICAL_INFERENCER_KEY] = v

        # Train the model
        msg.good("Training topics...")
        self._track_progress(cmd, num_iterations, verbose)
        self.metadata["num_topics"] = num_topics
        self.metadata["optimize_interval"] = optimize_interval
        # For flags we don't have a canonical mapping for, provide a path_to_ entry
        # to preserve other easily accessible metadata entries. Do not set legacy
        # keys when we are mapping to a canonical key.
        mapping = {
            "output-doc-topics": self.CANONICAL_DOC_TOPIC_KEY,
            "topic-word-weights-file": self.CANONICAL_TERM_WEIGHTS_KEY,
            "output-topic-keys": self.CANONICAL_TOPIC_KEYS_KEY,
            "inferencer-filename": self.CANONICAL_INFERENCER_KEY,
        }
        for k, v in flags.items():
            if k not in ["num-topics", "optimize-interval"]:
                if k in mapping:
                    # canonical keys already set earlier in the loop
                    continue
                self.metadata[f"path_to_{k.replace('-', '_')}"] = v
        self.metadata["training_command"] = cmd
        msg.good("Complete")

    @validate_call(config=model_config)
    def infer(
        self,
        docs: list[str] | Path | str,
        path_to_inferencer: Optional[str] = None,
        output_path: Optional[str] = None,
        keep_sequence: bool = True,
        preserve_case: bool = True,
        remove_stopwords: bool = True,
        use_pipe_from: Optional[str] = None,
        show: bool = False,
    ) -> list[list[float]] | None:
        """Infer topic distributions for new documents using a saved MALLET inferencer.

        Args:
            docs (list[str] | Path | str): The documents to infer topics for or a path to a file with documents.
            path_to_inferencer (Optional[str]): Path to the MALLET inferencer file. If None, use metadata.
            output_path (Optional[str]): Path to write the output doc-topics file. If None, it defaults to model_dir/infer-doc-topics.txt
            keep_sequence (bool): Whether to keep the sequence in the import-file step.
            preserve_case (bool): Whether to preserve case in the import-file step.
            remove_stopwords (bool): Whether to remove stopwords in the import-file step.
            use_pipe_from (Optional[str]): Optional pipe file to reuse for formatting.
            show (bool): If True, display the returned distributions (no-op in headless).

        Returns:
            list[list[float]] | None: The inferred topic distributions (list of lists), or None if `show` is True.
        """
        # Accept a single file path or list of documents
        if isinstance(docs, (Path, str)) and Path(docs).is_file():
            # it's an input file
            input_file = str(docs)
            # ensure we have a formatted mallet file if not provided
            path_to_formatted = os.path.join(self.model_dir, "infer_input.mallet")
            # import-file to format the input for mallet
            cmd_import = f"{self.path_to_mallet or 'mallet'} import-file --input {input_file} --output {path_to_formatted}"
            if keep_sequence:
                cmd_import += " --keep-sequence"
            if remove_stopwords:
                cmd_import += " --remove-stopwords"
            if preserve_case:
                cmd_import += " --preserve-case"
            if use_pipe_from:
                cmd_import += f" --use-pipe-from {use_pipe_from}"
            # msg.info(cmd_import)
            os.system(cmd_import)
        else:
            # assume a list of document strings
            if isinstance(docs, bool) or not isinstance(docs, list):
                raise LexosException(
                    "Invalid `docs` argument: expected a list of strings or a path to a file."
                )
            # Write a temporal input file
            path_to_plain = os.path.join(self.model_dir, "infer_input.txt")
            with open(path_to_plain, "w", encoding="utf-8") as fh:
                for i, doc in enumerate(docs):
                    if isinstance(doc, bool) or not isinstance(doc, str):
                        raise LexosException(
                            "Invalid `docs` element: expected document text (str) for each item."
                        )
                    fh.write(f"{i}\tno_label\t{doc.replace('\n', ' ')}\n")
            # format it with import-file
            path_to_formatted = os.path.join(self.model_dir, "infer_input.mallet")
            cmd_import = f"{self.path_to_mallet or 'mallet'} import-file --input {path_to_plain} --output {path_to_formatted}"
            if keep_sequence:
                cmd_import += " --keep-sequence"
            if remove_stopwords:
                cmd_import += " --remove-stopwords"
            if preserve_case:
                cmd_import += " --preserve-case"
            if use_pipe_from:
                cmd_import += f" --use-pipe-from {use_pipe_from}"
            # msg.info(cmd_import)
            os.system(cmd_import)

        # Determine the inferencer file to use
        if not path_to_inferencer:
            path_to_inferencer = self._metadata_get([self.CANONICAL_INFERENCER_KEY])
        if not path_to_inferencer:
            raise LexosException(
                "No inferencer has been set. Provide `path_to_inferencer` or set it in metadata when training."
            )

        path_to_formatted = path_to_formatted
        if output_path is None:
            output_path = os.path.join(self.model_dir, "infer-doc-topics.txt")

        cmd = f"{self.path_to_mallet or 'mallet'} infer-topics --inferencer {path_to_inferencer} --input {path_to_formatted} --output-doc-topics {output_path}"
        # msg.info(cmd)
        os.system(cmd)

        # Read the output file and return distributions
        distributions = []
        try:
            with open(output_path, "r") as f:
                for line in f.readlines():
                    # Skip blank lines
                    if not line.strip():
                        continue
                    if line.split()[0] != "#doc":
                        parts = line.strip().split("\t")
                        if len(parts) >= 3:
                            raw_dist = parts[2:]
                            # If the distribution token contains topic:prob pairs as a single
                            # token (e.g. '0:0.1 1:0.9'), parse it out into a dense vector
                            if len(raw_dist) == 1 and ":" in raw_dist[0]:
                                token = raw_dist[0]
                                pairs = re.split(r"\s+", token)
                                if all(":" in p for p in pairs):
                                    tp_map = {}
                                    max_topic = -1
                                    for p in pairs:
                                        try:
                                            t, prob = p.split(":")
                                            t_i = int(t)
                                            prob_f = float(prob)
                                            tp_map[t_i] = prob_f
                                            if t_i > max_topic:
                                                max_topic = t_i
                                        except Exception:
                                            raise LexosException(
                                                f"Topic:prob pair malformed in: {p}"
                                            )
                                    raw_dist = [
                                        str(tp_map.get(i, 0.0))
                                        for i in range(max_topic + 1)
                                    ]
                        else:
                            parts_ws = re.split(r"\s+", line.strip())
                            if len(parts_ws) >= 3:
                                raw_dist = parts_ws[2:]
                            else:
                                # parse compressed topic:prob pairs
                                token = line.strip().split()[-1]
                                pairs = re.split(r"\s+", token)
                                if all(":" in p for p in pairs):
                                    tp_map = {}
                                    max_topic = -1
                                    for p in pairs:
                                        t, prob = p.split(":")
                                        t_i = int(t)
                                        prob_f = float(prob)
                                        tp_map[t_i] = prob_f
                                        if t_i > max_topic:
                                            max_topic = t_i
                                    raw_dist = [
                                        str(tp_map.get(i, 0.0))
                                        for i in range(max_topic + 1)
                                    ]
                                else:
                                    raise LexosException(
                                        f"The line '{line.strip()}' in the inferred doc-topics file is not formatted correctly."
                                    )
                        try:
                            distribution = [float(p) for p in raw_dist]
                        except Exception:
                            raise LexosException(
                                f"Unable to parse distribution values from line: '{line.strip()}'"
                            )
                        distributions.append(distribution)
        except FileNotFoundError:
            raise LexosException(
                f"Inferred doc-topic output file not found: {output_path}"
            )

        if show:
            # user wants to display; we return None in this case for parity with other methods
            return None
        return distributions

distributions: list[str] cached property ¤

Get the topic distributions of the model.

mean_num_tokens: int property ¤

Get the mean number of tokens per document in the model.

metadata: dict[str, Any] = {} pydantic-field ¤

A dict containing metadata generated by the class instance.

model_dir: Optional[Path | str] = None pydantic-field ¤

The directory where the model is stored.

model_directory: str property ¤

Return the model_directory from metadata or raise LexosException if missing.

num_docs: int property ¤

Get the number of docs in the model.

topic_keys: list[list[str]] cached property ¤

Get the keys of the model.

Returns:

Type Description
list[list[str]]

list[list[str]]: A list of topics where each topic is a sublist containing the topic index, topic weight, and a space-separated list of keywords.

vocab_size: int property ¤

Get the vocabulary size of documents in the model.

__init__(**data) -> None ¤

Initialize the Mallet class.

Source code in lexos/topic_modeling/mallet/__init__.py
def __init__(self, **data) -> None:
    """Initialize the Mallet class."""
    super().__init__(**data)
    # Assign the model directory if provided via constructor (model_dir)
    # or via incoming metadata. Create the directory if it is provided
    # to maintain a predictable filesystem state for later operations.
    if self.model_dir is None and isinstance(self.metadata, dict):
        # If the user provided a model_directory via metadata, accept it.
        if "model_directory" in self.metadata:
            self.model_dir = self.metadata["model_directory"]
    # If we now have a model_dir, validate and create it
    if self.model_dir is not None:
        # Validate that model_dir is not a boolean
        if isinstance(self.model_dir, bool):
            raise LexosException(
                "Invalid `model_dir` argument: expected a path (str or Path), not a boolean."
            )
        # Convert Path objects to str
        if isinstance(self.model_dir, Path):
            model_dir_str = str(self.model_dir)
        else:
            model_dir_str = self.model_dir
        # Ensure the model_dir is not a file
        p = Path(model_dir_str)
        if p.exists() and p.is_file():
            raise LexosException(
                f"The specified `model_dir` ({model_dir_str}) exists and is a file, expected a directory."
            )
        # Create the directory if it does not exist
        p.mkdir(parents=True, exist_ok=True)
        # Set metadata `model_directory` if not already set
        if not isinstance(data.get("model_dir"), type(None)):
            self.metadata["model_directory"] = model_dir_str

get_keys(num_topics: int = None, topics: list[int] = None, num_keys: int = 10, as_df: bool = False) -> str | Styler ¤

Get a string representation of the topic keys of the model.

Parameters:

Name Type Description Default
num_topics int

The number of topics to get keys for. If None, get keys for all topics.

None
topics list[int]

A list of topic indices to get keys for. If None, get keys for all topics.

None
num_keys int

The number of keys to output for each topic.

10
as_df bool

Whether to return the result as a pandas DataFrame instead of a string.

False

Returns:

Type Description
str | Styler

str | Styler: A string or DataFrame representation of the topic keys. The DataFrame is styled for presentation in a Jupyter notebook to prevent clipping of the keywords in a Jupyter notebook. If you need an actual DataFrame object, reference df.data.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def get_keys(
    self,
    num_topics: int = None,
    topics: list[int] = None,
    num_keys: int = 10,
    as_df: bool = False,
) -> str | Styler:
    """Get a string representation of the topic keys of the model.

    Args:
        num_topics (int): The number of topics to get keys for. If None, get keys for all topics.
        topics (list[int]): A list of topic indices to get keys for. If None, get keys for all topics.
        num_keys (int): The number of keys to output for each topic.
        as_df (bool): Whether to return the result as a pandas DataFrame instead of a string.

    Returns:
        str | Styler: A string or DataFrame representation of the topic keys. The DataFrame is styled for presentation in a Jupyter notebook to prevent clipping of the keywords in a Jupyter notebook. If you need an actual `DataFrame` object, reference `df.data`.
    """
    num_available_topics = len(self.topic_keys)
    if num_topics and not topics:
        if num_topics > num_available_topics:
            raise IndexError(
                f"Requested num_topics={num_topics}, but only {num_available_topics} topics are available."
            )
        topic_keys = self.topic_keys[:num_topics]
    elif topics:
        # Validate all indices
        for i in topics:
            if i < 0 or i >= num_available_topics:
                raise IndexError(
                    f"Topic index {i} is out of range. Valid indices are 0 to {num_available_topics - 1}."
                )
        topic_keys = [self.topic_keys[i] for i in topics]
    else:
        topic_keys = self.topic_keys
    output = ""
    for topic in topic_keys:
        keywords = " ".join(topic[2].split()[:num_keys])
        output += f"Topic {topic[0]}\t{topic[1]}\t{keywords}\n"
    if as_df:
        data = []
        for topic in topic_keys:
            keywords = " ".join(topic[2].split()[:num_keys])
            data.append(
                {"Topic": topic[0], "Label": topic[1], "Keywords": keywords}
            )
        df = pd.DataFrame(data)
        show_index = True  # or False
        offset = 2 if show_index else 1
        nth = df.columns.get_loc("Keywords") + offset

        css = [
            # header cell of Keywords column
            {
                "selector": f"thead th:nth-child({nth})",
                "props": [("text-align", "left")],
            },
            # the column cells
            {
                "selector": f"td.col{df.columns.get_loc('Keywords')}",
                "props": [("text-align", "left")],
            },
        ]

        styled_df = df.style.set_table_styles(css).set_properties(
            subset=["Keywords"], **{"text-align": "left"}
        )
        return styled_df
    return output

get_top_docs(topic=0, n=10, metadata: pd.DataFrame = None, as_str: bool = False) -> pd.DataFrame | str ¤

Get the top n documents for a given topic.

Parameters:

Name Type Description Default
topic int

Topic number.

0
n int

Number of top documents to return.

10
metadata DataFrame

Dataframe with the metadata in the same order as the training data (optional).

None
as_str bool

Whether to return the result as a string instead of a dataframe.

False

Returns:

Type Description
DataFrame | str

A pd.DataFrame or str: A dataframe with the top n documents for the given topic, or a string representation of the dataframe.

Notes
  • The metadata must be in the same order as the training data.
  • The document text will get ellided by the maximum width of a pandas column. An easy way to see the full text is to set as_str=True and output the result with a print statement. You can also use the pandas API to extract the information with something like top_docs.Document.tolist().
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def get_top_docs(
    self, topic=0, n=10, metadata: pd.DataFrame = None, as_str: bool = False
) -> pd.DataFrame | str:
    """Get the top n documents for a given topic.

    Args:
        topic (int): Topic number.
        n (int): Number of top documents to return.
        metadata (pd.DataFrame): Dataframe with the metadata in the same order as the training data (optional).
        as_str (bool): Whether to return the result as a string instead of a dataframe.

    Returns:
        A pd.DataFrame or str: A dataframe with the top n documents for the given topic, or a string representation of the dataframe.

    Notes:
        - The metadata must be in the same order as the training data.
        - The document text will get ellided by the maximum width of a pandas column. An easy way to see the full text is to set `as_str=True` and output the result with a print statement. You can also use the pandas API to extract the information with something like `top_docs.Document.tolist()`.
    """
    # Ensure that the path to doc-topic distributions exists (resolved via canonical keys)
    if not self._metadata_has([self.CANONICAL_DOC_TOPIC_KEY]):
        raise LexosException(
            "No topic distributions have been set. Please designate a path to the doc-topic distributions (e.g. `path_to_topic_distributions`) when you train your topic model."
        )

    if "path_to_training_data" not in self.metadata:
        raise LexosException(
            "No training data has been set. Please designate a path for `path_to_training_data` when you train your topic model."
        )

    # Read the training data file
    with open(self.metadata["path_to_training_data"], "r", encoding="utf-8") as f:
        training_data = f.readlines()
    training_data = [
        line.split("\t")[2].strip() for line in training_data
    ]  # Skip the id and label

    # Validate topic index against model's known number of topics (0-based)
    try:
        topic = int(topic)
    except Exception:
        raise ValueError("Topic index must be an integer")

    num_topics = None
    # Try the reliable metadata if present
    if "num_topics" in self.metadata:
        try:
            num_topics = int(self.metadata["num_topics"])
        except Exception:
            num_topics = None
    # Fall back to topic_keys if available
    if num_topics is None:
        try:
            num_topics = len(self.topic_keys)
        except Exception:
            num_topics = None
    # As a last resort, infer from distributions
    distribution_len = None
    if len(self.distributions) > 0:
        # ensure all distributions have the same length; otherwise raise
        lengths = set(len(d) for d in self.distributions)
        if len(lengths) > 1:
            raise LexosException(
                "Topic distribution lengths are inconsistent across documents; check `path_to_topic_distributions` format."
            )
        distribution_len = next(iter(lengths))
        if num_topics is None:
            num_topics = distribution_len
    if num_topics is None:
        raise LexosException(
            "Model does not have topic information yet. Train or load a model first."
        )
    # If we have both a metadata num_topics and inferred distribution length, they should match.
    if (
        distribution_len is not None
        and num_topics is not None
        and distribution_len != num_topics
    ):
        raise LexosException(
            f"Mismatch between declared number of topics ({num_topics}) and distribution vector length ({distribution_len}). Check your training outputs."
        )

    if not (0 <= topic < num_topics):
        raise ValueError(
            f"Invalid topic index {topic}. Valid topic indices are 0..{num_topics - 1} (0-based)."
        )

    # Combine the distribution and training data, then convert to a dataframe
    distribution_data = [
        (_distribution[topic], _document)
        for _distribution, _document in zip(self.distributions, training_data)
    ]
    df = pd.DataFrame(distribution_data, columns=["Distribution", "Document"])
    df.index.name = "Doc ID"

    # If metadata is provided, concatenate it to the dataframe
    if metadata is not None:
        df = pd.concat([df, metadata], axis=1)

    # Sort the dataframe by distribution and return the top n documents
    if as_str:
        return (
            df.sort_values(by="Distribution", ascending=False).head(n).to_string()
        )
    return df.sort_values(by="Distribution", ascending=False).head(n)

get_topic_term_probabilities(topics: Optional[int | list[int]] = None, n: int = 5, as_df: bool = False) -> str | pd.DataFrame ¤

Get a string representation of the term distribution for a given topic.

Parameters:

Name Type Description Default
topics int | list[int]

Topic number. If None, get the probabilities for all topics.

None
n int

The number of keywords to display.

5
as_df bool

Whether to display the result as a string or a pandas DataFrame.

False

Returns:

Name Type Description
str str | DataFrame

A string representation of the term distribution for the given topic.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def get_topic_term_probabilities(
    self, topics: Optional[int | list[int]] = None, n: int = 5, as_df: bool = False
) -> str | pd.DataFrame:
    """Get a string representation of the term distribution for a given topic.

    Args:
        topics (int | list[int]): Topic number. If None, get the probabilities for all topics.
        n (int): The number of keywords to display.
        as_df (bool): Whether to display the result as a string or a pandas DataFrame.

    Returns:
        str: A string representation of the term distribution for the given topic.
    """
    if isinstance(topics, int):
        topics = [topics]
    topic_term_probability_dict = self.load_topic_term_distributions()
    # Build either a string (legacy behavior) or a DataFrame with columns
    # Topic | Term | Probability based on the `as_df` parameter.
    if as_df:
        rows = []
        for _topic, _term_probability_dict in topic_term_probability_dict.items():
            if topics is None or _topic in topics:
                for _term, _probability in sorted(
                    _term_probability_dict.items(), key=lambda x: x[1], reverse=True
                )[:n]:
                    rows.append(
                        {
                            "Topic": _topic,
                            "Term": _term,
                            "Probability": _probability,
                        }
                    )
        df = pd.DataFrame(rows)
        return df
    result = ""
    for _topic, _term_probability_dict in topic_term_probability_dict.items():
        if topics is None or _topic in topics:
            result += f"Topic {_topic}\n"
            for _term, _probability in sorted(
                _term_probability_dict.items(), key=lambda x: x[1], reverse=True
            )[:n]:
                result += f"\t{_term}: {_probability}\n"
            result += "\n"
    return result

import_data(training_data: list[str], path_to_training_data: str = None, keep_sequence: bool = True, preserve_case: bool = True, remove_stopwords: bool = True, use_pipe_from: Optional[str] = None, training_ids: Optional[list[int]] = None) -> None ¤

Convenience wrapper to import a list of documents and format them for MALLET.

Parameters:

Name Type Description Default
training_data list[str]

List of document texts.

required
path_to_training_data str

Path to write raw training text file. If None, will default to model directory.

None
keep_sequence bool

Keep token sequence.

True
preserve_case bool

Preserve case.

True
remove_stopwords bool

Remove stopwords.

True
use_pipe_from Optional[str]

Pipe filename for MALLET import.

None
training_ids Optional[list[int]]

Optional training IDs mapping.

None
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def import_data(
    self,
    training_data: list[str],
    path_to_training_data: str = None,
    keep_sequence: bool = True,
    preserve_case: bool = True,
    remove_stopwords: bool = True,
    use_pipe_from: Optional[str] = None,
    training_ids: Optional[list[int]] = None,
) -> None:
    """Convenience wrapper to import a list of documents and format them for MALLET.

    Args:
        training_data (list[str]): List of document texts.
        path_to_training_data (str): Path to write raw training text file. If None, will default to model directory.
        keep_sequence (bool): Keep token sequence.
        preserve_case (bool): Preserve case.
        remove_stopwords (bool): Remove stopwords.
        use_pipe_from (Optional[str]): Pipe filename for MALLET import.
        training_ids (Optional[list[int]]): Optional training IDs mapping.
    """
    # Validate training_data is a list of strings
    if isinstance(training_data, bool) or not isinstance(training_data, list):
        raise LexosException(
            "Invalid `training_data` argument: expected a list of document strings."
        )
    for doc in training_data:
        if isinstance(doc, bool) or not isinstance(doc, str):
            raise LexosException(
                "Invalid `training_data` element: expected document text (str) for each item."
            )

    # Determine output paths if not provided
    if not path_to_training_data:
        model_base = self.model_dir if self.model_dir else os.getcwd()
        path_to_training_data = os.path.join(model_base, "training_data.txt")
    self._import_training_data(
        training_data,
        path_to_training_data,
        keep_sequence,
        remove_stopwords,
        preserve_case,
        use_pipe_from,
        training_ids,
    )

import_dir(data_source: str | list[str], keep_sequence: bool = True, preserve_case: bool = True, remove_stopwords: bool = True, use_pipe_from: Optional[str] = None, training_ids: Optional[list[int]] = None) -> None ¤

Read training data from directories and save formatted training data file.

Parameters:

Name Type Description Default
data_source str | list[str]

A directory or list of directories to import.

required
keep_sequence bool

Whether to keep the word sequence in the documents.

True
preserve_case bool

Whether to preserve the case of the documents.

True
remove_stopwords bool

Whether to remove stopwords from the documents.

True
use_pipe_from Optional[str]

Path to a MALLET pipe file to use for importing.

None
training_ids Optional[list[int]]

Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.

None
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def import_dir(
    self,
    data_source: str | list[str],
    keep_sequence: bool = True,
    preserve_case: bool = True,
    remove_stopwords: bool = True,
    use_pipe_from: Optional[str] = None,
    training_ids: Optional[list[int]] = None,
) -> None:
    """Read training data from directories and save formatted training data file.

    Args:
        data_source (str | list[str]): A directory or list of directories to import.
        keep_sequence (bool): Whether to keep the word sequence in the documents.
        preserve_case (bool): Whether to preserve the case of the documents.
        remove_stopwords (bool): Whether to remove stopwords from the documents.
        use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
        training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
    """
    # Explicitly validate data_source to reject booleans
    if isinstance(data_source, bool):
        raise LexosException(
            "Invalid `data_source` argument: expected a directory path or list of paths, not a boolean."
        )
    training_data = read_dirs(ensure_list(data_source))
    self._import_training_data(
        training_data,
        path_to_training_data=None,
        keep_sequence=keep_sequence,
        remove_stopwords=remove_stopwords,
        preserve_case=preserve_case,
        use_pipe_from=use_pipe_from,
        training_ids=training_ids,
    )

import_docs(data_source: str | list[str], keep_sequence: bool = True, preserve_case: bool = True, remove_stopwords: bool = True, use_pipe_from: Optional[str] = None, training_ids: Optional[list[int]] = None) -> None ¤

Read training data from docs and save formatted training data file.

Parameters:

Name Type Description Default
data_source str | list[str]

A doc or list of docs to import.

required
keep_sequence bool

Whether to keep the word sequence in the documents.

True
preserve_case bool

Whether to preserve the case of the documents.

True
remove_stopwords bool

Whether to remove stopwords from the documents.

True
use_pipe_from Optional[str]

Path to a MALLET pipe file to use for importing.

None
training_ids Optional[list[int]]

Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.

None
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def import_docs(
    self,
    data_source: str | list[str],
    keep_sequence: bool = True,
    preserve_case: bool = True,
    remove_stopwords: bool = True,
    use_pipe_from: Optional[str] = None,
    training_ids: Optional[list[int]] = None,
) -> None:
    """Read training data from docs and save formatted training data file.

    Args:
        data_source (str | list[str]): A doc or list of docs to import.
        keep_sequence (bool): Whether to keep the word sequence in the documents.
        preserve_case (bool): Whether to preserve the case of the documents.
        remove_stopwords (bool): Whether to remove stopwords from the documents.
        use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
        training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
    """
    if isinstance(data_source, bool):
        raise LexosException(
            "Invalid `data_source` argument: expected a doc or list of docs, not a boolean."
        )
    docs = ensure_list(data_source)
    training_data = [
        f"{i}\t\t{doc.text}" if isinstance(doc, Doc) else f"{i}\t\t{doc}"
        for i, doc in enumerate(docs)
    ]
    self._import_training_data(
        training_data,
        path_to_training_data=None,
        keep_sequence=keep_sequence,
        remove_stopwords=remove_stopwords,
        preserve_case=preserve_case,
        use_pipe_from=use_pipe_from,
        training_ids=training_ids,
    )

import_file(data_source: str | list[str], keep_sequence: bool = True, preserve_case: bool = True, remove_stopwords: bool = True, use_pipe_from: Optional[str] = None, training_ids: Optional[list[int]] = None) -> None ¤

Read training data from file and save formatted training data file.

Parameters:

Name Type Description Default
data_source str | list[str]

A file or list of files to import.

required
keep_sequence bool

Whether to keep the word sequence in the documents.

True
preserve_case bool

Whether to preserve the case of the documents.

True
remove_stopwords bool

Whether to remove stopwords from the documents.

True
use_pipe_from Optional[str]

Path to a MALLET pipe file to use for importing.

None
training_ids Optional[list[int]]

Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.

None
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def import_file(
    self,
    data_source: str | list[str],
    keep_sequence: bool = True,
    preserve_case: bool = True,
    remove_stopwords: bool = True,
    use_pipe_from: Optional[str] = None,
    training_ids: Optional[list[int]] = None,
) -> None:
    """Read training data from file and save formatted training data file.

    Args:
        data_source (str | list[str]): A file or list of files to import.
        keep_sequence (bool): Whether to keep the word sequence in the documents.
        preserve_case (bool): Whether to preserve the case of the documents.
        remove_stopwords (bool): Whether to remove stopwords from the documents.
        use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
        training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
    """
    if isinstance(data_source, bool):
        raise LexosException(
            "Invalid `data_source` argument: expected a file path or list of paths, not a boolean."
        )
    training_data = read_file(ensure_list(data_source))
    self._import_training_data(
        training_data,
        path_to_training_data=None,
        keep_sequence=keep_sequence,
        remove_stopwords=remove_stopwords,
        preserve_case=preserve_case,
        use_pipe_from=use_pipe_from,
        training_ids=training_ids,
    )

infer(docs: list[str] | Path | str, path_to_inferencer: Optional[str] = None, output_path: Optional[str] = None, keep_sequence: bool = True, preserve_case: bool = True, remove_stopwords: bool = True, use_pipe_from: Optional[str] = None, show: bool = False) -> list[list[float]] | None ¤

Infer topic distributions for new documents using a saved MALLET inferencer.

Parameters:

Name Type Description Default
docs list[str] | Path | str

The documents to infer topics for or a path to a file with documents.

required
path_to_inferencer Optional[str]

Path to the MALLET inferencer file. If None, use metadata.

None
output_path Optional[str]

Path to write the output doc-topics file. If None, it defaults to model_dir/infer-doc-topics.txt

None
keep_sequence bool

Whether to keep the sequence in the import-file step.

True
preserve_case bool

Whether to preserve case in the import-file step.

True
remove_stopwords bool

Whether to remove stopwords in the import-file step.

True
use_pipe_from Optional[str]

Optional pipe file to reuse for formatting.

None
show bool

If True, display the returned distributions (no-op in headless).

False

Returns:

Type Description
list[list[float]] | None

list[list[float]] | None: The inferred topic distributions (list of lists), or None if show is True.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def infer(
    self,
    docs: list[str] | Path | str,
    path_to_inferencer: Optional[str] = None,
    output_path: Optional[str] = None,
    keep_sequence: bool = True,
    preserve_case: bool = True,
    remove_stopwords: bool = True,
    use_pipe_from: Optional[str] = None,
    show: bool = False,
) -> list[list[float]] | None:
    """Infer topic distributions for new documents using a saved MALLET inferencer.

    Args:
        docs (list[str] | Path | str): The documents to infer topics for or a path to a file with documents.
        path_to_inferencer (Optional[str]): Path to the MALLET inferencer file. If None, use metadata.
        output_path (Optional[str]): Path to write the output doc-topics file. If None, it defaults to model_dir/infer-doc-topics.txt
        keep_sequence (bool): Whether to keep the sequence in the import-file step.
        preserve_case (bool): Whether to preserve case in the import-file step.
        remove_stopwords (bool): Whether to remove stopwords in the import-file step.
        use_pipe_from (Optional[str]): Optional pipe file to reuse for formatting.
        show (bool): If True, display the returned distributions (no-op in headless).

    Returns:
        list[list[float]] | None: The inferred topic distributions (list of lists), or None if `show` is True.
    """
    # Accept a single file path or list of documents
    if isinstance(docs, (Path, str)) and Path(docs).is_file():
        # it's an input file
        input_file = str(docs)
        # ensure we have a formatted mallet file if not provided
        path_to_formatted = os.path.join(self.model_dir, "infer_input.mallet")
        # import-file to format the input for mallet
        cmd_import = f"{self.path_to_mallet or 'mallet'} import-file --input {input_file} --output {path_to_formatted}"
        if keep_sequence:
            cmd_import += " --keep-sequence"
        if remove_stopwords:
            cmd_import += " --remove-stopwords"
        if preserve_case:
            cmd_import += " --preserve-case"
        if use_pipe_from:
            cmd_import += f" --use-pipe-from {use_pipe_from}"
        # msg.info(cmd_import)
        os.system(cmd_import)
    else:
        # assume a list of document strings
        if isinstance(docs, bool) or not isinstance(docs, list):
            raise LexosException(
                "Invalid `docs` argument: expected a list of strings or a path to a file."
            )
        # Write a temporal input file
        path_to_plain = os.path.join(self.model_dir, "infer_input.txt")
        with open(path_to_plain, "w", encoding="utf-8") as fh:
            for i, doc in enumerate(docs):
                if isinstance(doc, bool) or not isinstance(doc, str):
                    raise LexosException(
                        "Invalid `docs` element: expected document text (str) for each item."
                    )
                fh.write(f"{i}\tno_label\t{doc.replace('\n', ' ')}\n")
        # format it with import-file
        path_to_formatted = os.path.join(self.model_dir, "infer_input.mallet")
        cmd_import = f"{self.path_to_mallet or 'mallet'} import-file --input {path_to_plain} --output {path_to_formatted}"
        if keep_sequence:
            cmd_import += " --keep-sequence"
        if remove_stopwords:
            cmd_import += " --remove-stopwords"
        if preserve_case:
            cmd_import += " --preserve-case"
        if use_pipe_from:
            cmd_import += f" --use-pipe-from {use_pipe_from}"
        # msg.info(cmd_import)
        os.system(cmd_import)

    # Determine the inferencer file to use
    if not path_to_inferencer:
        path_to_inferencer = self._metadata_get([self.CANONICAL_INFERENCER_KEY])
    if not path_to_inferencer:
        raise LexosException(
            "No inferencer has been set. Provide `path_to_inferencer` or set it in metadata when training."
        )

    path_to_formatted = path_to_formatted
    if output_path is None:
        output_path = os.path.join(self.model_dir, "infer-doc-topics.txt")

    cmd = f"{self.path_to_mallet or 'mallet'} infer-topics --inferencer {path_to_inferencer} --input {path_to_formatted} --output-doc-topics {output_path}"
    # msg.info(cmd)
    os.system(cmd)

    # Read the output file and return distributions
    distributions = []
    try:
        with open(output_path, "r") as f:
            for line in f.readlines():
                # Skip blank lines
                if not line.strip():
                    continue
                if line.split()[0] != "#doc":
                    parts = line.strip().split("\t")
                    if len(parts) >= 3:
                        raw_dist = parts[2:]
                        # If the distribution token contains topic:prob pairs as a single
                        # token (e.g. '0:0.1 1:0.9'), parse it out into a dense vector
                        if len(raw_dist) == 1 and ":" in raw_dist[0]:
                            token = raw_dist[0]
                            pairs = re.split(r"\s+", token)
                            if all(":" in p for p in pairs):
                                tp_map = {}
                                max_topic = -1
                                for p in pairs:
                                    try:
                                        t, prob = p.split(":")
                                        t_i = int(t)
                                        prob_f = float(prob)
                                        tp_map[t_i] = prob_f
                                        if t_i > max_topic:
                                            max_topic = t_i
                                    except Exception:
                                        raise LexosException(
                                            f"Topic:prob pair malformed in: {p}"
                                        )
                                raw_dist = [
                                    str(tp_map.get(i, 0.0))
                                    for i in range(max_topic + 1)
                                ]
                    else:
                        parts_ws = re.split(r"\s+", line.strip())
                        if len(parts_ws) >= 3:
                            raw_dist = parts_ws[2:]
                        else:
                            # parse compressed topic:prob pairs
                            token = line.strip().split()[-1]
                            pairs = re.split(r"\s+", token)
                            if all(":" in p for p in pairs):
                                tp_map = {}
                                max_topic = -1
                                for p in pairs:
                                    t, prob = p.split(":")
                                    t_i = int(t)
                                    prob_f = float(prob)
                                    tp_map[t_i] = prob_f
                                    if t_i > max_topic:
                                        max_topic = t_i
                                raw_dist = [
                                    str(tp_map.get(i, 0.0))
                                    for i in range(max_topic + 1)
                                ]
                            else:
                                raise LexosException(
                                    f"The line '{line.strip()}' in the inferred doc-topics file is not formatted correctly."
                                )
                    try:
                        distribution = [float(p) for p in raw_dist]
                    except Exception:
                        raise LexosException(
                            f"Unable to parse distribution values from line: '{line.strip()}'"
                        )
                    distributions.append(distribution)
    except FileNotFoundError:
        raise LexosException(
            f"Inferred doc-topic output file not found: {output_path}"
        )

    if show:
        # user wants to display; we return None in this case for parity with other methods
        return None
    return distributions

load_topic_term_distributions() -> dict[str, float] ¤

Load the topic-term distributions from a file.

Returns:

Type Description
dict[str, float]

dict[str, float]: A dictionary of all topic-term distributions.

Source code in lexos/topic_modeling/mallet/__init__.py
def load_topic_term_distributions(self) -> dict[str, float]:
    """Load the topic-term distributions from a file.

    Returns:
        dict[str, float]: A dictionary of all topic-term distributions.
    """
    # Ensure that the path to a term weights file has been set.
    term_weight_path = self._metadata_get([self.CANONICAL_TERM_WEIGHTS_KEY])
    if term_weight_path is None:
        raise LexosException(
            f"No term weights have been set. Please designate a path to the term weights file (e.g. `{self.CANONICAL_TERM_WEIGHTS_KEY}`) when you train your topic model."
        )
    topic_term_weight_dict = defaultdict(lambda: defaultdict(float))
    topic_sum_dict = defaultdict(float)
    try:
        with open(term_weight_path, "r") as f:
            for _line in f:
                if not _line.strip():
                    continue
                parts = _line.strip().split("\t")
                if len(parts) != 3:
                    # Malformed line
                    raise ValueError(
                        f"Malformed line in term weights file: '{_line.strip()}'"
                    )
                _topic, _term, _weight = parts
                try:
                    weight_f = float(_weight)
                except Exception:
                    raise ValueError(
                        f"Invalid weight value '{_weight}' in line: '{_line.strip()}'"
                    )
                topic_term_weight_dict[_topic][_term] = weight_f
                topic_sum_dict[_topic] += weight_f
    except FileNotFoundError:
        # Surface file not found as filesystem error
        raise

    topic_term_probability_dict = defaultdict(lambda: defaultdict(float))
    for _topic, _term_weight_dict in topic_term_weight_dict.items():
        for _term, _weight in _term_weight_dict.items():
            topic_term_probability_dict[int(_topic)][_term] = (
                _weight / topic_sum_dict[_topic]
            )

    return topic_term_probability_dict

plot_categories_by_topic_boxplots(categories: list[str], topics: Optional[int | list[int]] = None, output_path: Optional[str] = None, target_labels: Optional[list[str]] = None, num_keys: int = 5, figsize: Optional[tuple[int, int]] = (6, 6), font_scale: Optional[float] = 1.2, color: Optional[ColorType] = 'lightblue', show: Optional[bool] = True, title: Optional[str] = None, overlay: Optional[str] = 'strip', overlay_kws: Optional[dict[str, Any]] = None, topic_distributions: Optional[list[list[float]]] = None) -> Figure | list[Figure] ¤

Plot boxplots showing the distribution of topic probabilities for each category.

Parameters:

Name Type Description Default
categories list[str]

The labels to use for the categories.

required
topics int | list[int]

The index of the topic to plot.

None
output_path str

The path to save the figure.

None
target_labels list[str]

Unique labels for categories to classify.

None
num_keys int

The number of keywords to display.

5
figsize Optional[tuple[int, int]]

(Optional[tuple[int, int]]): The dimensions of the figure.

(6, 6)
font_scale Optional[float]

The font scale for the figure.

1.2
color Optional[ColorType]

The color to use for the heatmap boxes. A matplotlib ColorType name or object.

'lightblue'
show Optional[bool]

Whether to show the figure.

True
title Optional[str]

Optional figure title. If not supplied, each plot will use a default title of Topic {topic}: {keywords}.

None
overlay Optional[str]

How to display the individual points overlaid on each boxplot. Supported values are 'strip' (default), 'swarm', or 'none'.

'strip'
overlay_kws Optional[dict]

Keyword arguments passed to the chosen overlay plotting method (seaborn.stripplot or seaborn.swarmplot).

None

Returns:

Type Description
Figure | list[Figure]

Figure | list[Figure]: The boxplot showing the topic associations by category.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def plot_categories_by_topic_boxplots(
    self,
    categories: list[str],
    topics: Optional[int | list[int]] = None,
    output_path: Optional[str] = None,
    target_labels: Optional[list[str]] = None,
    num_keys: int = 5,
    figsize: Optional[tuple[int, int]] = (6, 6),
    font_scale: Optional[float] = 1.2,
    color: Optional[ColorType] = "lightblue",
    show: Optional[bool] = True,
    title: Optional[str] = None,
    overlay: Optional[str] = "strip",
    overlay_kws: Optional[dict[str, Any]] = None,
    topic_distributions: Optional[list[list[float]]] = None,
) -> Figure | list[Figure]:
    """Plot boxplots showing the distribution of topic probabilities for each category.

    Args:
        categories (list[str]): The labels to use for the categories.
        topics (int | list[int]): The index of the topic to plot.
        output_path (str): The path to save the figure.
        target_labels (list[str]): Unique labels for categories to classify.
        num_keys (int): The number of keywords to display.
        figsize: (Optional[tuple[int, int]]): The dimensions of the figure.
        font_scale (Optional[float]): The font scale for the figure.
        color (Optional[ColorType]): The color to use for the heatmap boxes. A matplotlib ColorType name or object.
        show (Optional[bool]): Whether to show the figure.
        title (Optional[str]): Optional figure title. If not supplied, each plot will use a default title of
            `Topic {topic}: {keywords}`.
        overlay (Optional[str]): How to display the individual points overlaid on each boxplot. Supported
            values are 'strip' (default), 'swarm', or 'none'.
        overlay_kws (Optional[dict]): Keyword arguments passed to the chosen overlay plotting method
            (`seaborn.stripplot` or `seaborn.swarmplot`).

    Returns:
        Figure | list[Figure]: The boxplot showing the topic associations by category.
    """
    # Load topic_keys
    topic_keys = self.topic_keys

    # Ensure that topics is a list
    if topics is None:
        topics = list(range(len(topic_keys)))
    elif isinstance(topics, int):
        topics = [topics]

    # Ensure there are topic_labels
    if not target_labels:
        target_labels = list(set(categories))

    # Combine the labels and distributions into a dataframe.
    figs = []
    import os

    # Use user-provided topic_distributions if given, else default to self.distributions
    distributions = (
        topic_distributions
        if topic_distributions is not None
        else self.distributions
    )

    for topic in topics:
        keywords = " ".join(topic_keys[topic][2].split()[:num_keys])

        dicts_to_plot = []
        for _label, _distribution in zip(categories, distributions):
            if not target_labels or _label in target_labels:
                dicts_to_plot.append(
                    {
                        "Probability": float(_distribution[topic]),
                        "Category": _label,
                        "Topic": keywords,
                    }
                )
        df_to_plot = pd.DataFrame(dicts_to_plot)

        # Validate overlay option
        if overlay not in ("strip", "swarm", "none", None):
            raise LexosException(
                "Invalid `overlay` argument: expected 'strip', 'swarm', or 'none'."
            )

        # Show the final plot
        sns.set_theme(style="ticks", font_scale=font_scale)
        # Create a figure/axes so we can overlay points for small datasets
        if figsize:
            fig, ax = plt.subplots(figsize=figsize)
        else:
            fig, ax = plt.subplots()
        sns.boxplot(
            data=df_to_plot,
            x="Category",
            y="Probability",
            color=color,
            ax=ax,
            showmeans=True,
        )
        # Overlay data points so users can see the raw values when there are
        # too few observations to form a full box
        overlay_kws = dict(overlay_kws or {})
        try:
            if overlay == "strip" or overlay is None:
                sns.stripplot(
                    data=df_to_plot,
                    x="Category",
                    y="Probability",
                    color=overlay_kws.pop("color", "black"),
                    size=overlay_kws.pop("size", 4),
                    jitter=overlay_kws.pop("jitter", True),
                    ax=ax,
                    **overlay_kws,
                )
            elif overlay == "swarm":
                sns.swarmplot(
                    data=df_to_plot,
                    x="Category",
                    y="Probability",
                    color=overlay_kws.pop("color", "black"),
                    size=overlay_kws.pop("size", 4),
                    ax=ax,
                    **overlay_kws,
                )
            # if overlay == 'none', do nothing
        except Exception:
            # Overlay plotting is optional; ignore any backend failures
            pass
        sns.despine()
        plt.xticks(rotation=45, ha="right")
        # Set either the provided title or a sensible default including topic index and top keys
        if title is None:
            ax.set_title(f"Topic {topic}: {keywords}")
        else:
            # Use a figure-level title to avoid per-subplot clobbering
            fig.suptitle(title)
        plt.tight_layout()
        # Save each plot to a unique file if output_path is set
        if output_path:
            base, ext = os.path.splitext(output_path)
            save_path = f"{base}_topic{topic}{ext}"
            fig.savefig(save_path)
        figs.append(fig)
        if show:
            plt.show()
        plt.close(fig)
    if show:
        return None
    # If this function only generated a single figure, return it.
    if len(figs) == 1:
        return figs[0]
    return figs

plot_categories_by_topics_heatmap(categories: list[str], output_path: Path | str = None, target_labels: list[str] = None, num_keys: int = 5, figsize: Optional[tuple[int, int]] = None, font_scale: Optional[float] = 1.2, cmap: Optional[ColorType] = sns.cm.rocket_r, show: Optional[bool] = True, title: Optional[str] = None, topic_distributions: Optional[list[list[float]]] = None) -> Figure ¤

Plot heatmap showing topics by category.

Parameters:

Name Type Description Default
categories list[str]

The categories to use to classify topics.

required
output_path Path | str

The path to save the figure.

None
target_labels list[str]

Unique labels for categories to classify.

None
num_keys int

The number of keywords to display.

5
figsize Optional[tuple[int, int]]

(Optional[tuple[int, int]]): The dimensions of the figure.

None
font_scale Optional[float]

The font scale for the figure.

1.2
cmap Optional[ColorType]

The colormap to use for the heatmap. A matplotlib colormap name or object, or list of colors.

rocket_r
show Optional[bool]

Whether to show the figure.

True
title Optional[str]

Optional title for the figure. If not supplied, defaults to "Topics by Category (N=x)".

None

Returns:

Name Type Description
Figure Figure

The heatmap showing the topic associations by category.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def plot_categories_by_topics_heatmap(
    self,
    categories: list[str],
    output_path: Path | str = None,
    target_labels: list[str] = None,
    num_keys: int = 5,
    figsize: Optional[tuple[int, int]] = None,
    font_scale: Optional[float] = 1.2,
    cmap: Optional[ColorType] = sns.cm.rocket_r,
    show: Optional[bool] = True,
    title: Optional[str] = None,
    topic_distributions: Optional[list[list[float]]] = None,
) -> Figure:
    """Plot heatmap showing topics by category.

    Args:
        categories (list[str]): The categories to use to classify topics.
        output_path (Path | str): The path to save the figure.
        target_labels (list[str]): Unique labels for categories to classify.
        num_keys (int): The number of keywords to display.
        figsize: (Optional[tuple[int, int]]): The dimensions of the figure.
        font_scale (Optional[float]): The font scale for the figure.
        cmap (Optional[ColorType]): The colormap to use for the heatmap. A matplotlib colormap name or object, or list of colors.
        show (Optional[bool]): Whether to show the figure.
        title (Optional[str]): Optional title for the figure. If not supplied, defaults to "Topics by Category (N=x)".

    Returns:
        Figure: The heatmap showing the topic associations by category.
    """
    # Load topic_keys
    topic_keys = self.topic_keys

    # Use user-provided topic_distributions if given, else default to self.distributions
    distributions = (
        topic_distributions
        if topic_distributions is not None
        else self.distributions
    )

    dicts_to_plot = []
    for _category_label, _distribution in zip(categories, distributions):
        if not target_labels or _category_label in target_labels:
            for _topic, _probability in enumerate(_distribution):
                keywords = " ".join(topic_keys[_topic][2].split()[:num_keys])
                if num_keys:
                    if keywords:
                        _topic_label = f"Topic {_topic}: {keywords}"
                    else:
                        _topic_label = f"Topic {_topic}"
                else:
                    _topic_label = f"Topic {_topic}"
                dicts_to_plot.append(
                    {
                        "Probability": float(_probability),
                        "Category": _category_label,
                        "Topic": _topic_label,
                    }
                )

    # Create a dataframe, format it for the heatmap function, and normalize the columns.
    df_to_plot = pd.DataFrame(dicts_to_plot)
    df_wide = df_to_plot.pivot_table(
        index="Category", columns="Topic", values="Probability"
    )
    df_norm_col = (df_wide - df_wide.mean()) / df_wide.std()

    # Ensure the columns are ordered by numeric topic index where available (natural sort)
    def _topic_key(col):
        # Match 'Topic <num>' possibly followed by ': ...'
        try:
            m = re.match(r"Topic\s+(\d+)", str(col))
            if m:
                return (0, int(m.group(1)))
        except Exception:
            pass
        return (1, str(col))

    try:
        ordered_cols = sorted(list(df_norm_col.columns), key=_topic_key)
        df_norm_col = df_norm_col[ordered_cols]
    except Exception:
        # If columns are not iterable or sorting fails (e.g., custom objects),
        # we leave the DataFrame as-is rather than raising an exception.
        pass

    # Show the final plot
    sns.set_theme(style="ticks", font_scale=font_scale)
    if figsize:
        fig, ax = plt.subplots(figsize=figsize)
    else:
        fig, ax = plt.subplots()
    ax = sns.heatmap(df_norm_col, cmap=cmap, ax=ax)
    # Set either provided title or a sensible default that indicates the content and the number of topics
    if title is None:
        try:
            num_topics = len(df_norm_col.columns)
        except Exception:
            num_topics = None
        if num_topics is not None:
            title = f"Topics by Category ({num_topics} Topics)"
        else:
            title = "Topics by Category"
    if title:
        fig.suptitle(title)
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position("top")
    plt.xticks(rotation=30, ha="left")
    plt.tight_layout(rect=[0, 0, 1, 0.95])
    if output_path:
        plt.savefig(output_path)
    if show:
        plt.show()
        return None
    else:
        plt.close()
        return fig

plot_topics_over_time(times: list, topic_index: int, topic_distributions: Optional[list[list[float]]] = None, topic_keys: Optional[list[list[str]]] = None, output_path: Optional[str] = None, figsize: Optional[tuple[int, int]] = (7, 2.5), font_scale: Optional[float] = 1.2, color: Optional[ColorType] = 'cornflowerblue', show: Optional[bool] = True, title: Optional[str] = None) -> Figure | None ¤

Plot the probability of a topic over time.

Parameters:

Name Type Description Default
times list

List of time points corresponding to each document (must be same length as topic_distributions).

required
topic_index int

The index of the topic to plot.

required
topic_distributions Optional[list[list[float]]]

If provided, a list of topic distributions per document. If None, uses self.distributions.

None
topic_keys Optional[list[list[str]]]

If provided, a list of topic keys; otherwise uses self.topic_keys.

None
output_path Optional[str]

Path to save the output plot. If None the plot is shown but not saved.

None
figsize Optional[tuple[int, int]]

Figure size.

(7, 2.5)
font_scale Optional[float]

Seaborn font_scale.

1.2
color Optional[ColorType]

Line color.

'cornflowerblue'
show Optional[bool]

Whether to display the figure.

True
title Optional[str]

Optional figure title. Will default to the topic's keywords if not supplied.

None

Returns:

Type Description
Figure | None

Figure | None: The matplotlib figure if show=False, otherwise None.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def plot_topics_over_time(
    self,
    times: list,
    topic_index: int,
    topic_distributions: Optional[list[list[float]]] = None,
    topic_keys: Optional[list[list[str]]] = None,
    output_path: Optional[str] = None,
    figsize: Optional[tuple[int, int]] = (7, 2.5),
    font_scale: Optional[float] = 1.2,
    color: Optional[ColorType] = "cornflowerblue",
    show: Optional[bool] = True,
    title: Optional[str] = None,
) -> Figure | None:
    """Plot the probability of a topic over time.

    Args:
        times (list): List of time points corresponding to each document (must be same length as topic_distributions).
        topic_index (int): The index of the topic to plot.
        topic_distributions (Optional[list[list[float]]]): If provided, a list of topic distributions per document. If None, uses `self.distributions`.
        topic_keys (Optional[list[list[str]]]): If provided, a list of topic keys; otherwise uses `self.topic_keys`.
        output_path (Optional[str]): Path to save the output plot. If None the plot is shown but not saved.
        figsize (Optional[tuple[int,int]]): Figure size.
        font_scale (Optional[float]): Seaborn font_scale.
        color (Optional[ColorType]): Line color.
        show (Optional[bool]): Whether to display the figure.
        title (Optional[str]): Optional figure title. Will default to the topic's keywords if not supplied.

    Returns:
        Figure | None: The matplotlib figure if `show=False`, otherwise None.
    """
    # Use provided distributions / keys or fall back to instance data
    distributions = (
        topic_distributions
        if topic_distributions is not None
        else self.distributions
    )
    topic_keys = topic_keys if topic_keys is not None else self.topic_keys

    if distributions is None or len(distributions) == 0:
        raise LexosException("No topic distributions available to plot.")

    if topic_index < 0:
        raise ValueError("topic_index must be a non-negative integer")

    if len(times) != len(distributions):
        raise LexosException(
            "Length mismatch: 'times' must be the same length as topic_distributions"
        )

    data_dicts = []
    for j, _distribution in enumerate(distributions):
        if len(_distribution) <= topic_index:
            # skip documents that don't cover the requested topic index
            continue
        data_dicts.append(
            {"Probability": _distribution[topic_index], "Time": times[j]}
        )

    if len(data_dicts) == 0:
        raise LexosException(f"No data found for topic index {topic_index}")

    data_df = pd.DataFrame(data_dicts)

    sns.set_theme(style="ticks", font_scale=font_scale)
    fig, ax = plt.subplots(figsize=figsize)
    sns.lineplot(data=data_df, x="Time", y="Probability", color=color, ax=ax)
    ax.set_xlabel("Time")
    ax.set_ylabel("Topic Probability")

    # Default title
    if title is None:
        try:
            keywords = " ".join(topic_keys[topic_index][2].split()[:5])
            title = f"Topic {topic_index}: {keywords}"
        except Exception:
            title = f"Topic {topic_index}"
    if title:
        fig.suptitle(title)

    plt.tight_layout()
    sns.despine()
    if output_path:
        fig.savefig(output_path)
    if show:
        plt.show()
        return None
    else:
        return fig

topic_clouds(topics: Optional[int | list[int]] = None, max_terms: Optional[int] = 30, figsize: Optional[tuple[int, int]] = (10, 10), output_path: Optional[str] = None, show: Optional[bool] = True, round_mask: Any = True, title: Optional[str] = None, **kwargs: Any) -> Figure ¤

Get a MultiCloud object for the topic-term distributions.

This method converts the internal topic-term probability dictionary to a DataFrame (topics as rows) and constructs a lexos.visualization.cloud.MultiCloud instance for visualization.

Parameters:

Name Type Description Default
topics Optional[int | list[int]]

Topics to include (rows). If None, show all.

None
max_terms Optional[int]

Maximum number of top keywords to display per topic. Maps to the limit parameter of MultiCloud and max_words in opts when not set.

30
figsize Optional[tuple[int, int]]

Size of the overall figure.

(10, 10)
output_path Optional[str]

If provided, the MultiCloud figure will be saved to this path.

None
show Optional[bool]

If True, the figure will be displayed in the current environment.

True
round_mask bool | int | str

Either a boolean indicating whether to use a default circular mask (True maps to radius 120; False disables mask), or an integer radius to use for a custom mask. Strings containing integer values will be converted. Passing invalid values will raise a LexosException.

True
title Optional[str]

Optional title for the overall MultiCloud figure. If None, a default of "Topic Clouds (N topics)" will be used.

None
**kwargs Any

Additional keyword arguments. Use opts to pass wordcloud options for each cloud.

{}

Returns:

Name Type Description
Figure Figure

If show is False, returns a Matplotlib Figure object created by MultiCloud.

Figure

Otherwise returns None after displaying the figure.

Notes

The labels displayed above each word cloud will be of the form Topic 0, Topic 1, etc.; keywords are not included in the labels to keep the display uncluttered.

Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def topic_clouds(
    self,
    topics: Optional[int | list[int]] = None,
    max_terms: Optional[int] = 30,
    figsize: Optional[tuple[int, int]] = (10, 10),
    output_path: Optional[str] = None,
    show: Optional[bool] = True,
    round_mask: Any = True,
    title: Optional[str] = None,
    **kwargs: Any,
) -> Figure:
    """Get a `MultiCloud` object for the topic-term distributions.

    This method converts the internal topic-term probability dictionary
    to a DataFrame (topics as rows) and constructs a `lexos.visualization.cloud.MultiCloud`
    instance for visualization.

    Parameters:
        topics (Optional[int | list[int]]): Topics to include (rows). If None, show all.
        max_terms (Optional[int]): Maximum number of top keywords to display per topic. Maps
            to the `limit` parameter of `MultiCloud` and `max_words` in `opts` when not set.
        figsize (Optional[tuple[int, int]]): Size of the overall figure.
        output_path (Optional[str]): If provided, the MultiCloud figure will be saved to this path.
        show (Optional[bool]): If True, the figure will be displayed in the current environment.
        round_mask (bool|int|str): Either a boolean indicating whether to use a default circular mask
            (True maps to radius 120; False disables mask), or an integer radius to use for a custom
            mask. Strings containing integer values will be converted. Passing invalid values will
            raise a `LexosException`.
        title (Optional[str]): Optional title for the overall MultiCloud figure. If None, a default
            of "Topic Clouds (N topics)" will be used.
        **kwargs (Any): Additional keyword arguments. Use `opts` to pass wordcloud options for each cloud.

    Returns:
        Figure: If `show` is False, returns a Matplotlib Figure object created by `MultiCloud`.
        Otherwise returns None after displaying the figure.

    Notes:
        The labels displayed above each word cloud will be of the form `Topic 0`,
        `Topic 1`, etc.; keywords are not included in the labels to keep the
        display uncluttered.
    """
    sns.set_theme()

    # Load topic-term probabilities and convert to DataFrame with topics as rows
    topic_term_probability_dict = self.load_topic_term_distributions()
    df = pd.DataFrame.from_dict(topic_term_probability_dict, orient="index").fillna(
        0
    )

    # Filter the DataFrame to include only the specified topics (rows)
    if topics is not None:
        df = df.iloc[ensure_list(topics)]

    # Build options dict for MultiCloud
    opts = kwargs.get("opts", {})
    # Default to a white background unless overridden
    opts.setdefault("background_color", "white")
    # Ensure `max_words` is present if not provided, mapping from max_terms
    if "max_words" not in opts and max_terms is not None:
        opts["max_words"] = max_terms

    # Convert round_mask boolean or int into the radius integer expected by MultiCloud
    if isinstance(round_mask, bool):
        round_radius = 120 if round_mask else 0
    else:
        try:
            round_radius = int(round_mask) if round_mask is not None else 0
        except Exception:
            raise LexosException(
                "Invalid `round_mask` argument: expected a boolean or integer radius."
            )

    # Build simple numeric labels for each topic to avoid clutter
    labels = [f"Topic {i}" for i in range(len(df))]

    # Build figure_opts forwarding and set a white facecolor by default
    figure_opts = kwargs.get("figure_opts", {})
    figure_opts.setdefault("facecolor", "white")

    # Create the MultiCloud object with updated args compatible with the class
    # If no explicit title supplied, create a helpful default
    if title is None:
        try:
            num_topics = len(df)
        except Exception:
            num_topics = None
        if num_topics is not None:
            title = f"Topic Clouds ({num_topics} topics)"
        else:
            title = "Topic Clouds"

    mc = MultiCloud(
        data=df,
        limit=max_terms,
        figsize=figsize,
        opts=opts,
        round=round_radius,
        labels=labels,
        figure_opts=figure_opts,
        title=title,
    )

    # Save the file if requested
    if output_path:
        mc.save(output_path)

    # Show the file if requested
    if show:
        mc.show()
        return None
    else:
        return mc.fig

train(num_topics: int = 20, num_iterations: Optional[int] = 100, optimize_interval: Optional[int] = 10, verbose: Optional[bool] = True, path_to_model: Optional[str] = None, path_to_state: Optional[str] = None, path_to_topic_keys: Optional[str] = None, path_to_topic_distributions: Optional[str] = None, path_to_term_weights: Optional[str] = None, path_to_diagnostics: Optional[str] = None, path_to_inferencer: Optional[str] = None) -> None ¤

Train the topic model using MALLET.

Parameters:

Name Type Description Default
num_topics int

The number of topics to train.

20
num_iterations int

The number of iterations to train for.

100
optimize_interval int

The interval at which to optimize the model.

10
verbose bool

Whether to print the MALLET output.

True
path_to_inferencer Optional[str]

Optional output filename for saving a trained inferencer object that can be used with mallet infer-topics. If not provided, defaults to model_dir/inferencer.mallet.

None
Source code in lexos/topic_modeling/mallet/__init__.py
@validate_call(config=model_config)
def train(
    self,
    num_topics: int = 20,
    num_iterations: Optional[int] = 100,
    optimize_interval: Optional[int] = 10,
    verbose: Optional[bool] = True,
    # Common output paths: caller may pass canonical keys or path_to_* names
    path_to_model: Optional[str] = None,
    path_to_state: Optional[str] = None,
    path_to_topic_keys: Optional[str] = None,
    path_to_topic_distributions: Optional[str] = None,
    path_to_term_weights: Optional[str] = None,
    path_to_diagnostics: Optional[str] = None,
    path_to_inferencer: Optional[str] = None,
) -> None:
    """Train the topic model using MALLET.

    Args:
        num_topics (int): The number of topics to train.
        num_iterations (int): The number of iterations to train for.
        optimize_interval (int): The interval at which to optimize the model.
        verbose (bool): Whether to print the MALLET output.
        path_to_inferencer (Optional[str]): Optional output filename for saving a trained inferencer object
            that can be used with `mallet infer-topics`. If not provided, defaults to
            `model_dir/inferencer.mallet`.
    """
    path_to_formatted_training_data = os.path.join(
        self.model_dir, "training_data.mallet"
    )

    # Build the MALLET command
    cmd = f"{self.path_to_mallet or 'mallet'} train-topics"
    flags = {
        "input": path_to_formatted_training_data,
        "num-topics": num_topics,
        "num-iterations": num_iterations,
        "output-state": path_to_state
        or os.path.join(self.model_dir, "topic-state.gz"),
        "output-topic-keys": path_to_topic_keys
        or os.path.join(self.model_dir, "topic-keys.txt"),
        "output-doc-topics": path_to_topic_distributions
        or os.path.join(self.model_dir, "doc-topic.txt"),
        "topic-word-weights-file": path_to_term_weights
        or os.path.join(self.model_dir, "topic-weights.txt"),
        "diagnostics-file": path_to_diagnostics
        or os.path.join(self.model_dir, "diagnostics.xml"),
        # Optional inferencer filename path to save a trained inferencer for later inference
        "inferencer-filename": path_to_inferencer
        or os.path.join(self.model_dir, "inferencer.mallet"),
        "optimize-interval": optimize_interval,
    }

    for k, v in flags.items():
        if v:
            # Save file names in the model directory if they are not absolute paths
            if isinstance(v, str) and len(Path(v).parts) == 1:
                v = f"{self.metadata['model_directory']}/{v}"
            cmd += f" --{k} {v}"
            # Set canonical metadata keys for common outputs so consumers can
            # rely on a single key. Map train flags directly to the
            # canonical metadata keys.
            if k == "output-doc-topics":
                self.metadata[self.CANONICAL_DOC_TOPIC_KEY] = v
            if k == "topic-word-weights-file":
                self.metadata[self.CANONICAL_TERM_WEIGHTS_KEY] = v
            if k == "output-topic-keys":
                self.metadata[self.CANONICAL_TOPIC_KEYS_KEY] = v
            if k == "inferencer-filename":
                self.metadata[self.CANONICAL_INFERENCER_KEY] = v

    # Train the model
    msg.good("Training topics...")
    self._track_progress(cmd, num_iterations, verbose)
    self.metadata["num_topics"] = num_topics
    self.metadata["optimize_interval"] = optimize_interval
    # For flags we don't have a canonical mapping for, provide a path_to_ entry
    # to preserve other easily accessible metadata entries. Do not set legacy
    # keys when we are mapping to a canonical key.
    mapping = {
        "output-doc-topics": self.CANONICAL_DOC_TOPIC_KEY,
        "topic-word-weights-file": self.CANONICAL_TERM_WEIGHTS_KEY,
        "output-topic-keys": self.CANONICAL_TOPIC_KEYS_KEY,
        "inferencer-filename": self.CANONICAL_INFERENCER_KEY,
    }
    for k, v in flags.items():
        if k not in ["num-topics", "optimize-interval"]:
            if k in mapping:
                # canonical keys already set earlier in the loop
                continue
            self.metadata[f"path_to_{k.replace('-', '_')}"] = v
    self.metadata["training_command"] = cmd
    msg.good("Complete")

_metadata_get(keys: list[str]) -> str | None ¤

Return the first metadata value present among the provided keys or None.

The method assumes callers pass canonical key names; no synonym translation is performed.

Source code in lexos/topic_modeling/mallet/__init__.py
def _metadata_get(self, keys: list[str]) -> str | None:
    """Return the first metadata value present among the provided keys or None.

    The method assumes callers pass canonical key names; no synonym
    translation is performed.
    """
    # Only accept the canonical key for each category. If a synonym key is
    # present (legacy metadata), raise an error instructing users to use
    # the canonical key. This ensures a single canonical name per category.
    for k in keys:
        if k in self.metadata and self.metadata[k]:
            return self.metadata[k]
    return None

_metadata_has(keys: list[str]) -> bool ¤

Source code in lexos/topic_modeling/mallet/__init__.py
def _metadata_has(self, keys: list[str]) -> bool:
    return self._metadata_get(keys) is not None

_import_training_data(training_data: list[str], path_to_training_data: Optional[str] = None, keep_sequence: bool = True, remove_stopwords: bool = True, preserve_case: bool = True, use_pipe_from: Optional[str] = None, training_ids: Optional[list[int]] = None) -> None ¤

Import training data from a list of documents.

Parameters:

Name Type Description Default
training_data list[str]

A list of documents to import.

required
keep_sequence bool

Whether to keep the word sequence in the documents.

True
remove_stopwords bool

Whether to remove stopwords from the documents.

True
preserve_case bool

Whether to preserve the case of the documents.

True
use_pipe_from Optional[str]

Path to a MALLET pipe file to use for importing.

None
training_ids Optional[list[int]]

Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.

None
Source code in lexos/topic_modeling/mallet/__init__.py
def _import_training_data(
    self,
    training_data: list[str],
    path_to_training_data: Optional[str] = None,
    keep_sequence: bool = True,
    remove_stopwords: bool = True,
    preserve_case: bool = True,
    use_pipe_from: Optional[str] = None,
    training_ids: Optional[list[int]] = None,
) -> None:
    """Import training data from a list of documents.

    Args:
        training_data (list[str]): A list of documents to import.
        keep_sequence (bool): Whether to keep the word sequence in the documents.
        remove_stopwords (bool): Whether to remove stopwords from the documents.
        preserve_case (bool): Whether to preserve the case of the documents.
        use_pipe_from (Optional[str]): Path to a MALLET pipe file to use for importing.
        training_ids: Optional[list[int]]: A list of document ids designating a subset of the entire data set. If None, the entire dataset will be imported.
    """
    # Save the training data file
    path_to_training_data = (
        path_to_training_data
        if path_to_training_data is not None
        else os.path.join(self.model_dir, "training_data.txt")
    )
    path_to_formatted_training_data = os.path.join(
        self.model_dir, "training_data.mallet"
    )
    training_data_file = open(path_to_training_data, "w", encoding="utf-8")
    for i, doc in enumerate(training_data):
        # Remove newlines and carriage returns from the document
        doc = re.sub("[\r\n]+", " ", doc).strip()
        if training_ids:
            training_data_file.write(f"{training_ids[i]}\tno_label\t{doc}\n")
        else:
            training_data_file.write(f"{i}\tno_label\t {doc}\n")
    training_data_file.close()
    self.metadata["path_to_training_data"] = path_to_training_data
    self.metadata["path_to_formatted_training_data"] = (
        path_to_formatted_training_data
    )
    self.metadata["num_docs"] = len(training_data)
    # WARNING: Tokenisation relies on whitespace, so it may not be accurate for all languages
    self.metadata["mean_num_tokens"] = np.mean(
        [len(doc.split()) for doc in training_data]
    ).item()
    self.metadata["vocab_size"] = len(
        list(set([token for doc in training_data for token in doc.split()]))
    )

    # Build and execute the command to format the training data for MALLET
    cmd = f"{self.path_to_mallet or 'mallet'} import-file --input {path_to_training_data} --output {path_to_formatted_training_data}"
    if keep_sequence:
        cmd += " --keep-sequence"
    if remove_stopwords:
        cmd += " --remove-stopwords"
    if preserve_case:
        cmd += " --preserve-case"
    if use_pipe_from:
        cmd += f" --use-pipe-from {use_pipe_from}"
    msg.info(cmd)
    os.system(cmd)

_setup_wordcloud(round_mask, max_terms, **kwargs: dict[str, Any]) -> WordCloud ¤

Set up the word cloud object.

Parameters:

Name Type Description Default
round_mask bool

Whether to use a round mask for the word cloud.

required
max_terms int

The maximum number of keywords to display.

required
**kwargs dict[str, Any])

Additional keyword arguments for the WordCloud object.

{}

Returns:

Name Type Description
WordCloud WordCloud

A configured WordCloud object.

Source code in lexos/topic_modeling/mallet/__init__.py
def _setup_wordcloud(
    self, round_mask, max_terms, **kwargs: dict[str, Any]
) -> WordCloud:
    """Set up the word cloud object.

    Args:
        round_mask (bool): Whether to use a round mask for the word cloud.
        max_terms (int): The maximum number of keywords to display.
        **kwargs (dict[str, Any])): Additional keyword arguments for the WordCloud object.

    Returns:
        WordCloud: A configured WordCloud object.
    """
    # Define a mask to make the word cloud round (just some eye candy)
    if round_mask:
        x, y = np.ogrid[:300, :300]
        mask = (x - 150) ** 2 + (y - 150) ** 2 > 130**2
        mask = 255 * mask.astype(int)
    else:
        mask = None

    # Configure the word cloud object
    options = {
        "background_color": "white",
        "mask": mask,
        "contour_width": 0.1,
        "contour_color": "white",
        "max_words": max_terms,
        "min_font_size": 10,
        "max_font_size": 150,
        "random_state": 42,
        "colormap": "Dark2",
    }
    for k, v in kwargs.items():
        options[k] = v

    return WordCloud(**options)

_track_progress(mallet_cmd: str, num_iterations: int, verbose: bool = True) -> None ¤

Track the progress of the modeling.

Parameters:

Name Type Description Default
mallet_cmd str

The MALLET command to run.

required
num_iterations int

The number of iterations for the model.

required
verbose bool

Whether to print the MALLET output.

True
Notes
  • Prints MALLET output and updates the progress bar in 10% increments.
Source code in lexos/topic_modeling/mallet/__init__.py
def _track_progress(
    self, mallet_cmd: str, num_iterations: int, verbose: bool = True
) -> None:
    """Track the progress of the modeling.

    Args:
        mallet_cmd (str): The MALLET command to run.
        num_iterations (int): The number of iterations for the model.
        verbose (bool): Whether to print the MALLET output.

    Notes:
        - Prints MALLET output and updates the progress bar in 10% increments.
    """
    console = Console()
    # NOTE: This is a hack to make Jupyter notebooks in VS Code display all lines
    # in the same cell. It may cause undesirable results in other environments and
    # needs further testing. See https://github.com/Textualize/rich/issues/3483.
    if verbose:
        console.is_jupyter = False

    # Create a progress display with rich
    with Progress(
        TextColumn("[progress.description]{task.description}"),
        BarColumn(),
        TaskProgressColumn(),
        TimeElapsedColumn(),
    ) as progress:
        # Create a task with a total of 100 (percentage)
        task = progress.add_task("[blue]Training model...", total=100)

        # Run the MALLET command
        p = subprocess.Popen(
            mallet_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True
        )

        # Regex to match progress information
        prog = re.compile(r"\<([^\)]+)\>")

        # Track the last reported progress percentage to avoid duplicate updates
        last_progress = -1

        # Process the output line by line
        while p.poll() is None:
            line = p.stdout.readline().decode()
            if verbose:
                # Print MALLET output without disrupting progress
                console.print(line, end="")

            # Keep track of modeling progress
            try:
                # A float indicating the percentage, which is output by MALLET
                this_iter = float(prog.match(line).groups()[0])
                current_progress = int(100.0 * this_iter / num_iterations)

                # Only update on 10% multiples and avoid duplicate updates
                if current_progress % 10 == 0 and current_progress > last_progress:
                    # Update to the current progress percentage
                    progress.update(task, completed=this_iter)
                    last_progress = current_progress
                if current_progress == 100:
                    progress.update(
                        task, description="[green]Complete", completed=100
                    )
            except AttributeError:  # Not every line will match.
                pass