Skip to content

Wordcloud¤

The Wordcloud module produces single word clouds and multiple word clouds (multiclouds) based on the term frequencies of a text or collection of texts. It uses the Python Wordcloud package.

lexos.visualization.cloud.wordcloud.get_rows(lst, n) ¤

Yield successive n-sized rows from a list of documents.

Parameters:

Name Type Description Default
lst list

A list of documents.

required
n int

The number of columns in the row.

required

Yields:

Type Description
Iterator[int]

A generator with the documents separated into rows.

Source code in lexos\visualization\cloud\wordcloud.py
12
13
14
15
16
17
18
19
20
21
22
23
def get_rows(lst, n) -> Iterator[int]:
    """Yield successive n-sized rows from a list of documents.

    Args:
        lst (list): A list of documents.
        n (int): The number of columns in the row.

    Yields:
        A generator with the documents separated into rows.
    """
    for i in range(0, len(lst), n):
        yield lst[i : i + n]

lexos.visualization.cloud.wordcloud.wordcloud(dtm, docs=None, opts=None, show=True, figure_opts=None, round=None, filename=None) ¤

Make a word cloud.

Accepts data from a string, list of lists or tuples, a dict with terms as keys and counts/frequencies as values, or a dataframe.

Parameters:

Name Type Description Default
dtm Union[dict, list, object, pd.DataFrame, str, tuple]

The data. Accepts a text string, a list of lists or tuples, a dict with the terms as keys and the counts/frequencies as values, or a dataframe with "term" and "count" or "frequency" columns.

required
docs list

A list of documents to be selected from the DTM.

None
opts dict

The WordCloud() options. For testing, try {"background_color": "white", "max_words": 2000, "contour_width": 3, "contour_color": "steelblue"}

None
show bool

Whether to show the plotted word cloud or return it as a WordCloud object.

True
figure_opts dict

A dict of matplotlib figure options.

None
round int

An integer (generally between 100-300) to apply a mask that rounds the word cloud.

None
filename str

The filename to save the word cloud to.

None

Returns:

Name Type Description
object object

A WordCloud object if show is set to False.

Notes
Source code in lexos\visualization\cloud\wordcloud.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def wordcloud(
    dtm: Union[dict, list, object, pd.DataFrame, str, tuple],
    docs: List[str] = None,
    opts: dict = None,
    show: bool = True,
    figure_opts: dict = None,
    round: int = None,
    filename: str = None,
) -> object:
    """Make a word cloud.

    Accepts data from a string, list of lists or tuples, a dict with
    terms as keys and counts/frequencies as values, or a dataframe.

    Args:
        dtm (Union[dict, list, object, pd.DataFrame, str, tuple]): The data.
            Accepts a text string, a list of lists or tuples, a dict with
            the terms as keys and the counts/frequencies as values, or a
            dataframe with "term" and "count" or "frequency" columns.
        docs (list): A list of documents to be selected from the DTM.
        opts (dict): The WordCloud() options.
            For testing, try {"background_color": "white", "max_words": 2000, "contour_width": 3, "contour_color": "steelblue"}
        show (bool): Whether to show the plotted word cloud or return it as a WordCloud object.
        figure_opts (dict): A dict of matplotlib figure options.
        round (int): An integer (generally between 100-300) to apply a mask that rounds the word cloud.
        filename (str): The filename to save the word cloud to.

    Returns:
        object: A WordCloud object if show is set to False.

    Notes:
        - For a full list of options, see https://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html#wordcloud-wordcloud.
        - If `show=False` the function expects to be called with something like `wordcloud = make_wordcloud(data, show=False)`.
            This returns WordCloud object which can be manipulated by any of its methods, such as `to_file()`. See the
            WordCloud documentation for a list of methods.
    """
    if opts is None:
        opts = {
            "background_color": "white",
            "max_words": 2000,
            "contour_width": 0,
            "contour_color": "steelblue",
        }
    if figure_opts is None:
        figure_opts = {}

    if isinstance(dtm, DTM):
        # Get the dtm table
        data = dtm.get_table()

        # Get the counts for the desired documents
        if docs:
            docs = ["terms"] + docs
            data = data[docs].copy()
            # Create a new column with the total for each row
            data["count"] = data.sum(axis=1, numeric_only=True)
        # Get the dtm sums
        else:
            data["count"] = data.sum(axis=1, numeric_only=True)

        # Ensure that the table only has terms and counts
        data = data[["terms", "count"]].copy()
    else:
        data = dtm

    # Set the mask, if using
    if round:
        x, y = np.ogrid[:300, :300]
        mask = (x - 150) ** 2 + (y - 150) ** 2 > round ** 2
        mask = 255 * mask.astype(int)
        opts["mask"] = mask

    # Generate the WordCloud
    if isinstance(data, str):
        wc = WordCloud(**opts).generate_from_text(data)
    else:
        if isinstance(data, list):
            data = {x[0]: x[1] for x in data}
        elif isinstance(data, pd.DataFrame):
            term_counts = data.to_dict(orient="records")
            try:
                data = {x["terms"]: x["count"] for x in term_counts}
            except KeyError:
                data = {x["terms"]: x["frequency"] for x in term_counts}
        wc = WordCloud(**opts).generate_from_frequencies(data)

    # Plot or return the WordCloud
    if show:
        if figure_opts:
            plt.figure(**figure_opts)
        plt.axis("off")
        # If a filename is provided, save the figure
        if filename:
            plt.to_file(filename)
        plt.imshow(wc)
        plt.show()
    else:
        return wc

lexos.visualization.cloud.wordcloud.multicloud(dtm, docs=None, opts=None, ncols=3, title=None, labels=None, show=True, figure_opts=None, round=None, filename=None) ¤

Make multiclouds.

Accepts data from a string, list of lists or tuples, a dict with terms as keys and counts/frequencies as values, or a dataframe.

The best input is a dtm produced by get_dtm_table().

Parameters:

Name Type Description Default
dtm List[Union[dict, object, str, tuple]]

The data. Accepts a list of text strings, a list of tuples, or dicts with the terms as keys and the counts/frequencies as values, or a dataframe with "term" and "count" columns.

required
docs List[str]

(List[str]): A list of documents to be selected from the DTM.

None
opts dict

The WordCloud() options. For testing, try {"background_color": "white", "max_words": 2000, "contour_width": 3, "contour_color": "steelblue"}

None
ncols int

The number of columns in the grid.

3
title str

The title of the grid.

None
labels List[str]

The document labels for each subplot.

None
show bool

Whether to show the plotted word cloud or return it as a WordCloud object.

True
figure_opts dict

A dict of matplotlib figure options.

None
round int

An integer (generally between 100-300) to apply a mask that rounds the word cloud.

None
filename str

The filename to save the figure to.

None

Returns:

Name Type Description
object object

A WordCloud object if show is set to False.

Notes
Source code in lexos\visualization\cloud\wordcloud.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def multicloud(
    dtm: List[Union[dict, pd.DataFrame, object, str, tuple]],
    docs: List[str] = None,
    opts: dict = None,
    ncols: int = 3,
    title: str = None,
    labels: List[str] = None,
    show: bool = True,
    figure_opts: dict = None,
    round: int = None,
    filename: str = None,
) -> object:
    """Make multiclouds.

    Accepts data from a string, list of lists or tuples, a dict with
    terms as keys and counts/frequencies as values, or a dataframe.

    The best input is a dtm produced by `get_dtm_table()`.

    Args:
        dtm (List[Union[dict, object, str, tuple]]): The data.
            Accepts a list of text strings, a list of tuples,
            or dicts with the terms as keys and the counts/frequencies
            as values, or a dataframe with "term" and "count" columns.
        docs: (List[str]): A list of documents to be selected from the DTM.
        opts (dict): The WordCloud() options.
            For testing, try {"background_color": "white", "max_words": 2000, "contour_width": 3, "contour_color": "steelblue"}
        ncols (int): The number of columns in the grid.
        title (str): The title of the grid.
        labels (List[str]): The document labels for each subplot.
        show (bool): Whether to show the plotted word cloud or return it as a WordCloud object.
        figure_opts (dict): A dict of matplotlib figure options.
        round (int): An integer (generally between 100-300) to apply a mask that rounds the word cloud.
        filename (str): The filename to save the figure to.

    Returns:
        object: A WordCloud object if show is set to False.

    Notes:
        - For a full list of options, see https://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html#wordcloud-wordcloud.
        - If `show=False` the function expects to be called with something like `wordcloud = make_wordcloud(data, show=False)`.
            This returns WordCloud object which can be manipulated by any of its methods, such as `to_file()`. See the
            WordCloud documentation for a list of methods.
    """
    if opts is None:
        opts = {
            "background_color": "white",
            "max_words": 2000,
            "contour_width": 0,
            "contour_color": "steelblue",
        }
    if figure_opts is None:
        figure_opts = {}

    if isinstance(dtm, DTM):
        # Get table
        data = dtm.get_table()

        # Get the counts for the desired documents
        if docs:
            data = data[["terms"] + docs].copy()

        # Transposed table
        data = data.T

    else:
        data = dtm

    # Process the data data into a list
    if isinstance(data, pd.DataFrame):
        # Grab the first row for the header
        new_header = data.iloc[0]
        # Drop the first row
        data = data[1:]
        # Set the header row as the df header
        data.columns = new_header
        # Return a dict
        data = data.to_dict(orient="records")
    # Ensure that anything that is not a list of strings is converted
    # to the appropriate format.
    elif isinstance(data, list):
        if all(isinstance(s, str) for s in data):
            pass
        else:
            data = [{x[0:1]: x[1:2] for x in doc} for doc in data]

    # List for multiple word clouds if they are to be returned.
    multiclouds = []

    # Create a rounded mask
    if round:
        x, y = np.ogrid[:300, :300]
        mask = (x - 150) ** 2 + (y - 150) ** 2 > round ** 2
        mask = 255 * mask.astype(int)
        opts["mask"] = mask

    # Constrain the layout
    figure_opts["constrained_layout"] = True

    # Create the figure
    fig = plt.figure(**figure_opts)

    # Add the title
    if title:
        fig.suptitle(title)

    # Calculate the number of rows and columns

    nrows = int(np.ceil(len(data) / ncols))
    spec = fig.add_gridspec(nrows, ncols)

    # Divide the data into rows
    rows = list(get_rows(data, ncols))

    # Set an index for labels
    i = 0

    # Loop through the rows
    for row, doc in enumerate(rows):

        # Loop through the documents in the row
        for col, data in enumerate(doc):

            # Create a subplot
            ax = fig.add_subplot(spec[row, col])

            # Generate the subplot's word cloud
            if isinstance(data, str):
                wordcloud = WordCloud(**opts).generate_from_text(data)
            else:
                wordcloud = WordCloud(**opts).generate_from_frequencies(data)

            # If `show=True`, show the word cloud
            if show:
                ax.imshow(wordcloud)
                ax.axis("off")

                # Set the image title from the label
                if labels:
                    ax.set_title(labels[i])
                    i += 1

            # Otherwise, add the word cloud to the multiclouds list.
            else:
                multiclouds.append(wordcloud)

    # If a filename is provided, save the figure
    if filename:
        fig.savefig(filename)

    # If `show=False`, return the multiclouds list.
    if not show:
        return multiclouds